

Search for electroweak supersymmetry with compressed spectra with the ATLAS detector SUSY 2024 – June 13th, 2024

'_ **1** 🧎 🐎 .

Jeff Shahinian University of Pennsylvania

On behalf of the ATLAS Collaboration

Why look for higgsinos?

- Appearance of fine-tuning in SM to cancel quadratic divergences in m_H
- EWK scale higgsinos: natural solution to hierarchy problem
- $\widetilde{\chi}_1^{o}$ is viable DM candidate, provided *R*-parity is conserved and $m(\widetilde{\chi}_1^{o}) \lesssim 1.1 \text{ TeV}$

Higgsino LSP phenomenology

- Mass eigenstates: $\widetilde{\chi}_2^{\rm o}$, $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_1^{\rm o}$
- Pure higgsinos: $\Delta m(\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^{o}) \approx 350$ MeV, driven by radiative corrections
- Additional mixing with $\widetilde{W}/\widetilde{B}$ can increase this to $\mathcal{O}(10 \text{ GeV})$

Why haven't EWK scale higgsinos been ruled out?

- Very low production cross-sections ($\sigma pprox$ 1.3 pb for $m(\widetilde{H})$ = 200 GeV)
- Very soft decay products \rightarrow difficult to trigger/reconstruct

Compressed Higgsinos: Where Do We Stand?

Jeff Shahinian

June 13th, 2024 3 / 11

New Idea: "Cornering Higgsino" with Soft Displaced Tracks

Proposal: "Cornering Higgsino" [arXiv:1910.08065 ♂] → H. Fukuda, N. Nagata, H. Oide, H. Otono, S. Shirai

$\widetilde{\chi}_1^\pm$ decays for 0.4 GeV $\lesssim \Delta m(\widetilde{\chi}_1^\pm,\widetilde{\chi}_1^{ m o}) \lesssim$ 1 GeV

- Decay length: $c\tau \sim O(0.1 1 \text{ mm})$ \rightarrow well within first pixel layer (\sim 33 mm for ATLAS) but still measurable: $\sigma(d_0) \approx 0.05 \text{ mm}$ for $p_T = 2 \text{ GeV}$
- $\mathrm{BR}(\widetilde{\chi}_1^\pm \to \widetilde{\chi}_1^0 \pi^\pm) \approx 90\% 40\%$

Mono-jet signature + soft, isolated track with significant transverse displacement from PV: $S(d_0) = d_0/\sigma(d_0)$

Signal Regions

Event-level Selection

- $E_{\rm T}^{\rm miss} > 600 \, {\rm GeV}$
- * Leading jet: $p_{\rm T}>$ 250 GeV, $|\eta|<$ 2.5
- min[$\Delta \phi$ (any jet, E_T^{miss})] > 0.4
- No leptons or photons
- $N_{\rm jets} \leq 4$

Track-level Selection

- $p_{\mathrm{T}} \in$ [2 GeV, 5 GeV], $|\eta| <$ 1.5
- $|d_0| < 10 \, \text{mm}$, $|z_0 \sin \theta| < 3 \, \text{mm}$
- $\Delta\phi(\text{track}, E_{\text{T}}^{\text{miss}}) < 0.4$
- No other track with $p_{\rm T}$ > 1 GeV within ΔR = 0.4
- Not matched to $K_{\rm S}^{\rm O}$ or $\Lambda^{\rm O}$ decay vertex
- TightPrimary WP + $N_{\rm hits}^{\rm IBL} > 0$
- S(d_o) > 8

Monojet signature + soft, isolated, displaced track

SR-Low: $S(d_o) \in [8, 20]$ SR-High: $S(d_o) > 20$

[arXiv:2401.14046 🖒]

Jeff Shahinian

SUSY 2024

Standard Model Backgrounds

Dominant backgrounds

- "QCD tracks": $W(\to \ell \nu)/Z(\to \nu \nu)$ + jets events where track from long-lived hadron decays, pileup, underlying event is tagged as signal candidate track
 - Fully data-driven estimate via ABCD method in $E_{\tau}^{\text{miss, lep. inv.}}$ vs. $S(d_{0})$ plane
 - Transfer factors computed in 1 μ regions, applied in 0 ℓ regions
- " τ tracks": $W(\to \tau \nu)$ + jets events where soft pion/lepton from τ decay is tagged as signal candidate track
 - Semi-data-driven estimate
 - MC samples normalized to data in τ track enriched CRs at higher track p_{T} : 8 GeV $< p_{T}^{track} < 20$ GeV

Well-modeled SM backgrounds in VRs

- Low- E_{T}^{miss} VRs: shift E_{T}^{miss} to [300 GeV, 400 GeV] \rightarrow similar bkg. composition as SRs
- 1e, 2 ℓ , 1 γ VRs: QCD track bkg.
- $\tau_{\rm lep/had}$ VRs: shift track $p_{\rm T}$ to [5 GeV, 8 GeV]

 \rightarrow Time to unblind!

Run: 349309 Event: 1342904905 2018-05-01 16:21:51 CEST

SR = SR-High E_T^{miss} = 1001 GeV p_T(j) = 1009 GeV

p_T(track) = 3.3 GeV S(d₀) = 38.3

Unblinded Signal Regions

Unblinded Results

- * Observed data in excellent agreement with SM prediction \rightarrow no SUSY
- Set limits on visible cross-section of generic BSM physics and higgsino masses in simplified model

	SR-Low	$\operatorname{SR-High}$
Observed data	35	15
SM prediction	37 ± 4	14.8 ± 2.0
QCD track $W(\rightarrow \tau_{\ell}\nu)$ +jets $W(\rightarrow \tau_{h}\nu)$ +jets Others	$\begin{array}{c} 14.0 \pm 1.7 \\ 9.6 \pm 1.6 \\ 10.6 \pm 2.0 \\ 3.2 \pm 0.7 \end{array}$	$\begin{array}{c} 10.0 \pm 1.6 \\ 2.0 \pm 0.6 \\ 1.9 \pm 0.8 \\ 0.8 \pm 0.4 \end{array}$
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	0.10	0.07
$S^{95}_{ m obs}$ $S^{95}_{ m exp}$	$13.5 \\ 15.1^{+6.3}_{-4.2}$	$9.9 \\ 9.6^{+4.4}_{-2.8}$

Higgsino Simplified Model Limits

New ATLAS search for compressed higgsinos with Run 2 data

- Hard ISR jet + large E_{T}^{miss} + soft, displaced, isolated track
- Bridging the sensitivity gap between soft di-lepton and disappearing track searches
- First limits since LEP2 on higgsinos with 0.4 GeV $\lesssim \Delta m(\widetilde{\chi}^\pm_1,\widetilde{\chi}^o_1) \lesssim$ 1 GeV
 - Peak sensitivity: $m(\tilde{\chi}_1^{\pm}) < 170 \text{ GeV}$ for $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{o}) = 0.6 \text{ GeV}$

Outlook

- Significant constraints on low-mass higgsinos from LHC Run 2, but far from ruled out!
 - > Natural solution to hierarchy problem could still be just around the corner
- Exploring the full Δm space requires complimentary techniques and new ideas
- Simplest model of higgsino DM at 1.1 TeV still far over the horizon, but let's keep pushing!

Higgsino production cross-sections are at the level of the rarest SM processes observed at the LHC

Standard Model Total Production Cross Section Measurements

t-char

Jeff Shahinian

c.char

$\widetilde{\chi}_{\mathbf{1}}^{\pm}$ Branching Ratios

Br(Η -> χ X)

$\widetilde{\chi}_{\mathbf{2}}^{\mathbf{0}}$ Branching Ratios

Jeff Shahinian

[arXiv:1910.08065 🗗]

Full Signal Region Selection

Monoiet-like selections Variable Variable Requirement Track quality E_{T}^{miss} trigger 2 NIBL Trigger > 0 3 p_T [GeV] [1:5] Leading jet pT [GeV] > 250 < 1.5 Leading jet working point Tight do [mm] < 10 Leading jet |n| < 2.4 $|\Delta z_0 \sin \theta|$ [mm] < 3 Leading jet cleaning working point Tight $|\Delta \phi(p_{\rm T}^{\rm track}, E_{\rm T}^{\rm miss})|$ < 0.4E_T^{miss} [GeV] > 300 (5) Track-based isolation Number of leptons = 0Number of jets < 4 Secondary vertex veto $\min(\Delta\phi(any \text{ jet}, \mathbf{p}_T^{miss}))$ > 0.46 Leading $S(d_0)$ selection

Track selections

Optimisation

- Figures courtesv of A. Sala
- SRs binned in $S(d_0)$, sensitive to different Δm
 - **SR-low**: $S(d_0) \in [8, 20]$
 - **SR-high**: $S(d_0) > 20$

Analysis Regions

QCD track background estimation

au track background estimation

Relative uncertainties on SM backgrounds

- Data statistics in $W(\rightarrow au
 u)$ + jets CRs
- MC sample statistics for non-QCD track backgrounds
- Theoretical modeling
- $S(d_0)$ shape extraction from CR-1 μ
- Lepton, jet, E_{T}^{miss} reconstruction

Largest uncertainties from limited statistics \rightarrow expect improvements including Run 3 data

ATLAS Track d_{o} Resolution

IDTR-2018-008 🗗

- Measured for TightPrimary tracks in di-jet events
- $\sigma(d_{\rm O}) \approx$ 0.05 mm for $p_{\rm T}({\rm track})$ = 2 GeV

ATLAS Higgsino Strategy

On-shell boson decays -> hard leptons/jets + E^{miss} Not phenomenologically viable

Off-shell boson decays \rightarrow ISR jet + soft leptons + E_T^{miss}

Slightly long-lived chargino -> ISR jet + soft pion + E_T^{miss}

Long-lived chargino -> ISR jet + disappearing track + E_{T}^{miss}

Jeff Shahinian

SUSY 2024

Soft Lepton Search Results

- Higgsino mass limits using combination of 2 ℓ and 3 ℓ searches
- Similar mass reach: $m(\tilde{\chi}_2^0)$ excluded below ~ 200 GeV for $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \approx 7 10$ GeV in simplified model
- Mild excess seen by both experiments for $\Delta m(\widetilde{\chi}_2^o,\widetilde{\chi}_1^o)\sim$ 20 GeV

Disappearing Track Searches

Disappearing Track Signature for pure Higgsinos

- Pure higgsinos: $\Delta m(\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^0) \approx 280 350 \text{ MeV} \rightarrow C\tau \approx 7 14 \text{ mm}$
- Charginos can be detected in first layers of tracker before decaying to invisible $\widetilde{\chi}_1^{\circ}$ and very soft pion (not reconstructed) \rightarrow charged track that "disappears" in tracker volume ("tracklet")
- Backgrounds:
 - Random hits in Si detector mimicking tracklet
 - Charged lepton/hadron track with large kink due to material interaction/bremsstrahlung

Jeff Shahinian

Long Term Projections

Robust coverage from lepton colliders, but limited by $\sqrt{s}/2$ Remains an important benchmark for planning future of collider physics

Chargino mass [GeV]

1400

1200

800

1000

Jeff Shahinian