

Recent SUSY results on long-lived particles in ATLAS

Vasiliki A. Mitsou on behalf of the ATLAS Collaboration

31st International Conference on Supersymmetry and Unification of fundamental Interactions 10–14 June 2024, Madrid, Spain

SUSY 2024

Theory meets Experiment

Lifetime frontier

- Beyond-SM physics not appeared in searches so far
- Maybe we are not looking at the right signals
- Long-lived particles may be the answer
- Different detection techniques involving tracks, photons, leptons, jets, vertices, energy deposits ...

Long-lived particles @ SUSY

- Hierarchy of mass scale
 - Split SUSY: long-lived gluinos or squarks that hadronise before decaying → R-hadrons
- Small coupling between sparticle and final state
 - gravitational couplings → gauge-mediated symmetry breaking (GMSB)
 - weak **RPV** couplings
- Mass degeneracy between sparticles
 - chargino and neutralino wino in anomalymediated symmetry breaking (AMSB)
 - compressed higgsinos in natural scenarios
 - stau and neutralino in **coannihilation** scenarios

- 1. Pixel dE/dx + hadronic calo ToF R-hadrons, GMSB ATLAS-CONF-2023-044
- 2. dE/dx+ToF reinterpretation AMSB ATL-PHYS-PUB-2024-009
- 3. Micro-displaced dimuon GMSB Phys. Lett. B 846 (2023) 138172
- 4. Diphoton & dielectron GMSB Phys. Rev. D 108 (2023) 012012
- 5. Di-tau reinterpretation RPV <u>ATL-PHYS-PUB-2024-007</u>

dE

dx

m

Pixel dE/dx + ToF(1)

- Targeting singly charged, massive, slow particles: m > 100 GeV, τ > 3 ns
- Based on particle-mass from two independent determinations of βγ
 - *β*γ_{dE/dx}: Bethe-Bloch relation from specific ionisation loss (dE/dx) measured in pixel detector
 - *βγ*_{ToF} : time of flight (ToF) measured in hadronic calorimeter
- Improves 2022 search, where 3.3σ excess was observed [JHEP 06 (2023) 158]
- Background
 - SM processes with high- p_T tracks, large dE/dx from Landau-distribution tails of MIPs and low- θ_{TOF} by ToF mismeasurements
 - fully data-driven background estimation

 I^2 P 2] Bethe-Bloch formula

 $^{2}T_{\rm max}$

ATLAS-CONF-2023-044

 $2m_ec^2\beta^2$

SUSY2024 V.A. Mitsou

6

 $\tilde{\chi}_1^{\iota}$

 π^{\pm}

 $\tilde{\chi}_{1\,\text{(LLF)}}^{\pm}$

 π^{\pm}

 $\tilde{\chi}_1^{\pm}$ (LLP)

 $\tilde{\chi}_1^{\mp}$ (LLP)

Pixel dE/dx + ToF - chargino reinterpretation

- Chargino signal models complementary to gluino and stau signal models covered in <u>ATLAS-CONF-2023-044</u>
- Long-lived 'pure wino' chargino in AMSB model

Dimuon with small displacement

- Search for μ⁺μ[−] from smuon decays with O(mm) impact parameter & large m(μ⁺μ[−])
- Motivated by GMSB models; small coupling to LSP
- Dominant SM background: semileptonic B-hadron decays
- Extended ABCD method to estimate background

Phys. Lett. B 846 (2023) 138172

Diphoton and dielectron (I)

- First search for displaced *H/Z* production from neutral LLP decay
- Decay modes: $H \rightarrow \gamma \gamma$ and $Z \rightarrow ee$
- Based on precision spatial and timing capabilities of LAr EM calorimeter (ECAL)
- EM objects reconstructed using only ECAL without distinguishing
 between
 ^g/₂ 10⁴
 ATLAS
 → Data, CR Template
 → CR Template

diphotons and dielectrons

- delayed
- nonpointing
- Large MET, too

Diphoton and dielectron (II)

- No significant deviation observed in data
- GMSB model with pair-produced almost mass-degenerate higgsinos that decay to long-lived NLSP neutralinos
- For BR = 100%, $m(\tilde{\chi}_1^0)$ lower limits are set:
 - 369 GeV (Higgs)
 - 704 GeV (*Z*)
 - $\tau(\tilde{\chi}_1^0) = 2 \text{ ns}$ \rightarrow maximum sensitivity

9

H/Z

Phys. Rev. D 108 (2023) 012012

H/Z

Displaced τ from RPV SUSY

- Reinterpretation of di- τ [JHEP 05 (2024) 150] and 4-lepton [JHEP 07 (2021) 167] analyses for *prompt* decays
- Constrains RPV with coupling strength $\lambda_{\rm 133}$ and $\lambda_{\rm 233}$
- Stau and higgsino models

--PHYS-PUB-2024-007

Summary

- LLPs might be the key for finding BSM physics, including SUSY
- Ever increasing effort at LHC experiments to discover LLPs
- Development of new tools and strategies to improve identification of LLPs, pushing detector beyond original design capabilities
- No hints of SUSY signal in LLP searches so far
- Many more results expected from Run 3 and HL-LHC

SUSY2024 V.A. Mitsou

Thank you for your attention!

SUSY2024 V.A. Mitsou

R-parity conservation hinted but *not required* by proton stability

$$R = (-1)^{3(B-L)+2s}$$

$$R = \begin{cases} +1 \text{ for SM particles} \\ -1 \text{ for superpartners} \end{cases}$$

In *R*-parity violating SUSY

- LSP is not stable
- LSP may be charged and/or carry colour
- MET may be small (due to v's) or vanishing
- resonant LSP reconstruction (impossible in RPC SUSY)
- LSP may be long-lived → displaced vertices

14