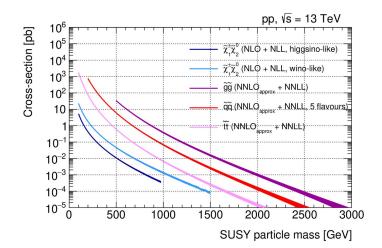
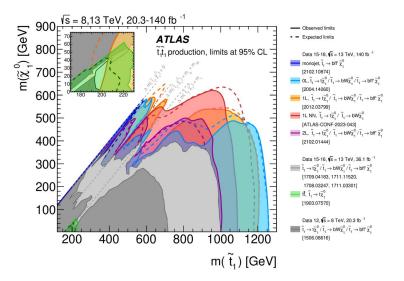
Searches for strong production of supersymmetric particles

Edmund Ting

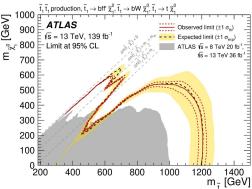

o.b.o. the ATLAS Collaboration

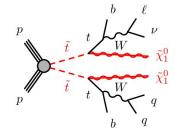
SUSY24, IFT Madrid

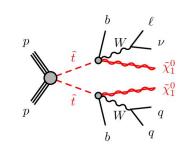

introduction

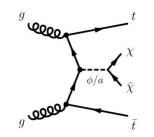
- supersymmetry (SUSY) is an extension to the Standard Model that presents solutions for e.g. dark matter, hierarchy problem
- prime target of study at colliders due to rich particle content
- useful in the context of collider searches: provides framework that encompasses many experimentally observable signatures
 - final state of various "regular" particles (electrons, jets, etc.)
 - more exotic: displaced objects [Vasiliki's[®] and Alexander's[®] talks]
- strong production of SUSY particles (squarks and gluinos) interesting due to higher theoretical cross-sections
 - summary of recent EW results in Alessandro's[®] and Jeff's[®] talks

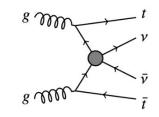
overview

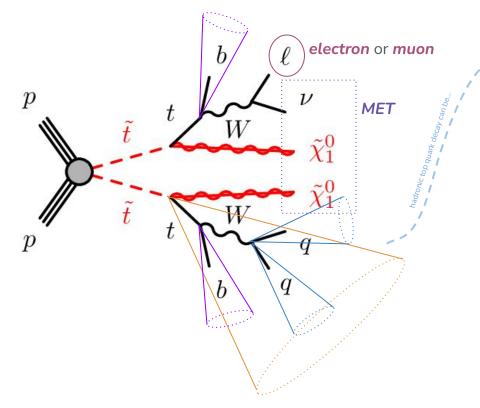

- many results already published by ATLAS[®] (and other experiments) targeting various regions of parameter space
- today's talk will focus on two recent ATLAS results motivated by RPC SUSY using 140 fb⁻¹ of Run 2 data:
 - Search for new phenomena with top-quark pairs and large missing transverse momentum [tt+MET] *JHEP 03 (2024) 139*
 - Search for top-squark pair production in final states containing a top quark, a charm quark and missing transverse momentum [tc+MET^S] arXiv:2402.12137
- RPV SUSY results: see Yvonne's talk[®]




stop to top — signal model


- searching for events with final state containing one hadronically-decaying top, one leptonically-decaying top, and large missing transverse momentum
- signature motivated by several scenarios:
 - SUSY: direct \tilde{t}_1 pair production with two- or three-body decays to $t+\tilde{\chi}_1$
 - DM fermions via (pseudo) scalar mediator in association with top quarks
 - ttvv from effective four-fermion contact interaction (SMEFT)
- uses the full 140 fb⁻¹ Run 2 dataset
 - improves on previous ATLAS $\tilde{t}_1 \tilde{t}_1$ result^{\mathscr{O}} by using better object reconstruction and identification, background simulation, and neural networks for signal classification
 - \circ results statistically combined with the all-hadronic stop search $^{\mathscr{P}}$





stop to top — analysis strategy

Signature-based search strategy: partition events based on object multiplicities.

Novel approach that provides sensitivity to a wide range of parameter space.

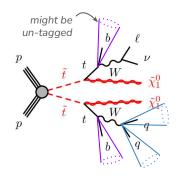
Resolved (p_T < 600 GeV): "top-NN"</p>

- assigns score to all two and three (small-R) jet combinations (with exactly 1 b-jet) in event
- combination with highest NN output value in each event is chosen as the top candidate
- 70% selection efficiency for top quarks with 200 GeV < $p_{\rm T}$ < 600 GeV

Boosted ($p_{T} > 600 \text{ GeV}$):

- reconstructed as large-*R* jet
- multivariate classifier[®] uses substructure to tag top jets with 80% efficiency

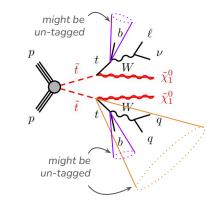
stop to top — analysis strategy

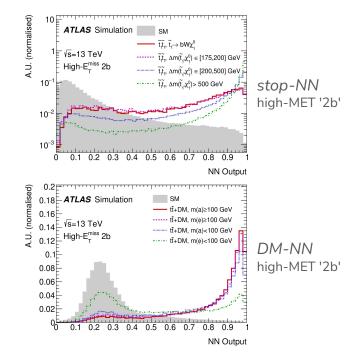

All signal regions are required to have 1 e/µ and no $\tau_{\rm had.}$ candidates.

Split into two categories depending on the large-R jet multiplicity:

 $N_{\text{large-R}} = 0$

"High-MET"

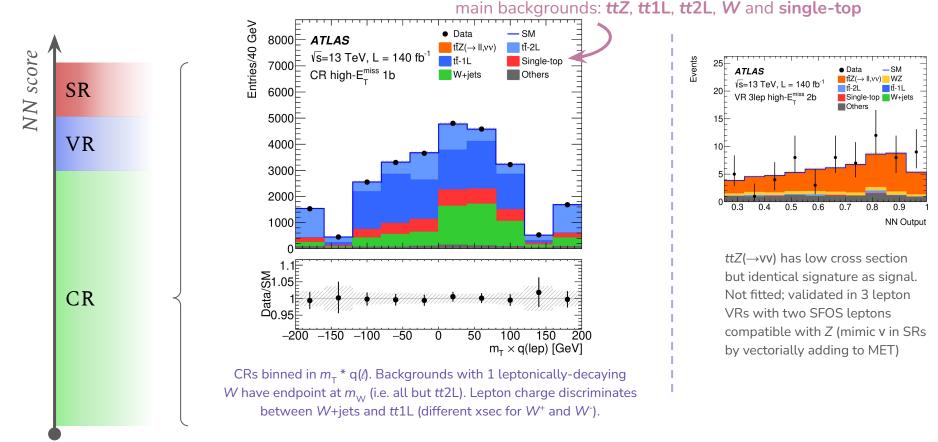

further split into '1b' and '2b' for events containing exactly one, or two or more, *b*-tagged jets



$$N_{\rm large-R} \ge 1$$

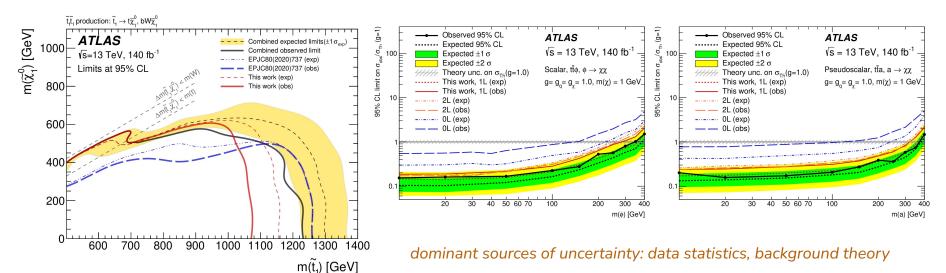
"Boosted"

six orthogonal regions depending on whether large-R jet is top-tagged, and the number of b-tagged jets (1 or 2+) and whether they lie inside or outside the large-R jet



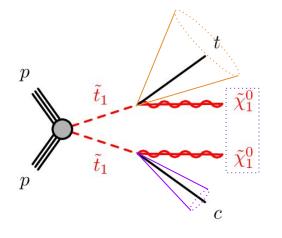
For each region defined, a NN classifier is trained, using SUSY signal events from **across parameter space**.

In high-MET regions, a second NN is also trained with *tt*+DM events as the signal.


stop to top — backgrounds

Normalisation factors derived for tt1L, tt2L, W and single-top backgrounds.

stop to top - results


- good agreement between data and MC in all CRs, VRs and SRs
 - NFs for fitted backgrounds compatible with unity; largest u/c for single top, related to tW diagram removal
 - \circ in SRs, largest deviations (~2 σ) seen in regions with 2 *b*-tagged jets
- **no significant excess >** set limits (combined with previous analyses)
 - \circ SUSY: exclusion limits using CL_s @ 95% CL
 - \circ DM: upper limits on production cross-section

 Data - SM ATLAS ttZ(→ II,vv) tł-2L √s=13 TeV. L = 140 fb Single-top SR boosted 2b-1t W+iets Others m(t., x0)=(1200,200) GeV Data/SM 2 0.95 0.97 0.98 0.99 0.96NN Output

stop to top or charm — signal model

- stop pair production with decay to neutralino and SM top or charm
- motivated by non-minimal flavour violating extensions $^{\mathscr{O}}$ of MSSM
- only consider scenarios where top can be produced on-shell: $\Delta m(\tilde{t}_1, \tilde{\chi}_1) \ge 175 \text{ GeV}$
- final state: hadronically-decaying top, charm quark, and large missing transverse momentum

b-tagging is well-established... c-tagging not so much!

 high-level DNN tagger (DL1r) leverages jet topology, impact parameter taggers, and secondary vertex finding algorithms

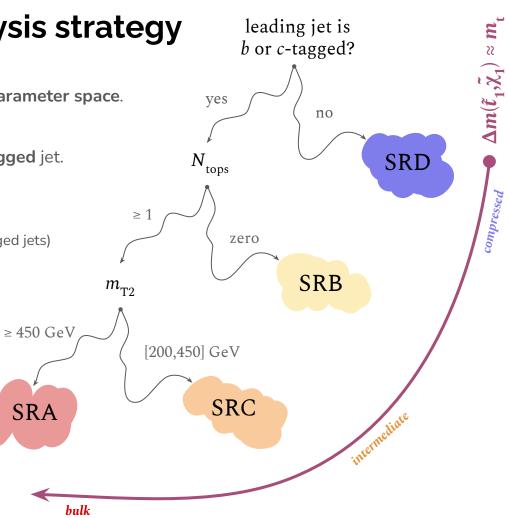
first LHC result in this final state

- multidimensional output (p_b, p_c, p_{light}) combined for c-tagging
- *b*-tag takes precedence: avoids high *b*-mistag rates

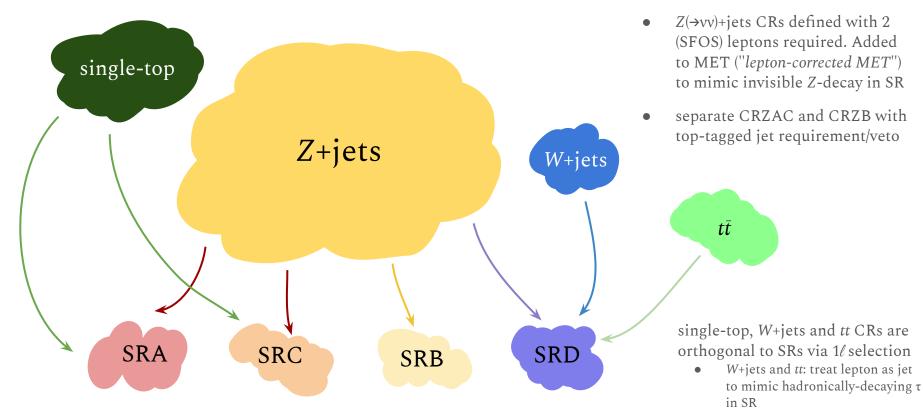
$$DL1r_c = \log\left(\frac{p_c}{f_b p_b + (1 - f_b)p_u}\right) - \frac{\varepsilon_c}{20\%} \frac{b - rej.}{29} \frac{light rej.}{57}$$

stop to top or charm — analysis strategy

Four signal regions targeting different regions of parameter space.

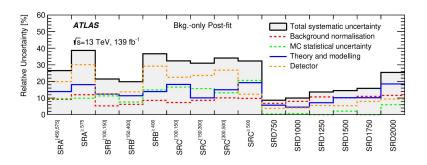

Trigger on **missing transverse momentum** (MET); require zero **leptons** (e/μ) , ≥ 1 *b***-tagged** and ≥ 1 *c***-tagged** jet. **Orthogonal** by choice of additional selections.

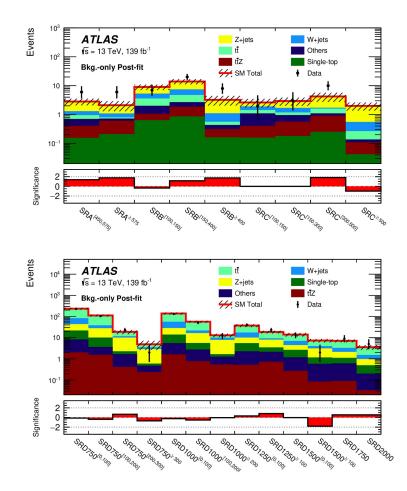
SRA (bulk):


- high m_{T2} (stransverse mass^{\mathcal{O}} between top- and c-tagged jets)
- SRB, SRC (intermediate):
 - binned in $m_{T}(j,MET)_{close}$ for increased sensitivity

SRD (compressed):

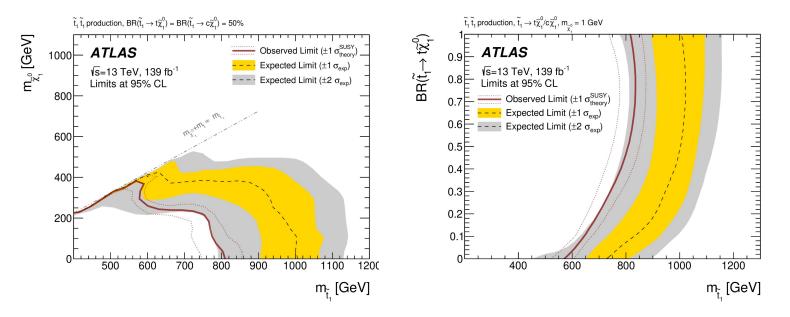
- strong ISR topology to facilitate high MET
- multi-class neural network to separate **signal** from **tt**-like and **V+jets**-like events
- binned in m_{eff} and m_{T} (j,MET)_{close}


stop to top or charm — backgrounds

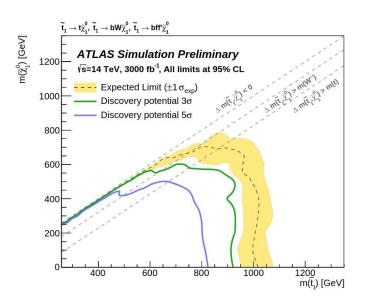


a **control region** (CR) is defined for each set of different-coloured arrows to estimate that background in the SRs indicated

stop to top or charm — results


- multi-bin fits: background-only (CR-only), model-dependent (CR+SR); incl.: model-independent
- fitted backgrounds:
 - A/B/C: Z+jets, single-top
 - **D**: Z+jets, W+jets, three NFs for tt (one per $m_{_{\text{eff}}}$ bin)
- dominant uncertainties:
 - A: experimental uncertainties related to large-*R* jets
 - **B/C**: selections on the *b* and *c*-jet p_{T}
 - D: W+jets normalisation uncertainty
- no significant excesses found in observed data
 - \circ largest deviation of 2σ in SRs with tightest $m_{_{T2}}$ cuts

stop to top or charm — results


- exclusion limits placed in the $m(\tilde{t}_1) m(\tilde{\chi}_1)$ plane
 - BR($\tilde{t}_1 \rightarrow t \tilde{\chi}_1$) = 50%
 - scan over BR for $m(\tilde{\chi}_1) = 1 \text{ GeV}$
 - model-independent interpretation: upper limits for visible cross-section and number of signal events at 95% CL (see $backup^{\mathscr{O}}$)

 $m(\tilde{t}_1) \leq 800 \text{ GeV}$ excluded for high mass, $m(\tilde{t}_1) \leq 600 \text{ GeV}$ for compressed

summary and outlook

- two new results using Run 2 data presented in this talk
 - \circ ~ strong production of stops motivated by RPC SUSY
 - novel ML-based analysis strategies featuring improved background modelling, object reconstruction, ...
- no significant excesses seen over SM backgrounds
 - limits set on stop pair production cross-section
 - including interpretations in DM models
- Run 3 ongoing: many new analyses in the works!
- looking to the future: high-luminosity upgrade will grant ~10x more integrated luminosity @ 14 TeV
 - recent pub-note exploring prospects of tt+MET (2ℓ) at
 HL-LHC^𝔅 given the expected luminosity scaling

backup

backup — tt+MET SR definitions

Analysis Category	$\begin{array}{ c c } High-E_{\rm T}^{\rm miss} \\ 1b & 2b \end{array}$		Boosted 1b-lep-0t 1b-had-0t 2b-0t 1b-lep-1t 1b-had-1t 2b-1t					
	10	20	1b-lep-0t	ib-nau-0	<i>n</i> 20-01	ID-lep-It	10-nad-1	t 20-ft
$N(lR \text{ jet}, p_{\mathrm{T}} > 600 \mathrm{GeV})$		0	≥ 1					
N(top-tagged IR jet)		-		0			≥ 1	
$N_{b-\text{jet}}$ with $\Delta R(b, lR \text{ jet}) < 1.1$		-	0	≥ 1	≥ 1	0	≥ 1	≥ 1
$N_{b-\text{jet}}$ with $\Delta R(b, lR \text{ jet}) > 1.1$		-	≥ 1	0	≥ 1	≥ 1	0	≥ 1
top-NN-tagged multiplet	6	\checkmark			-	0		
Nb-jet	1	≥ 2						
Nlight-jet	≥ 2	≥ 1	-					
top _{had} candidate	top-NN	I multiplet	et IR jet					
top _{lep} candidate	l + j	$\ell + b$	$\ell + b$	$\ell(+j)$	$\ell + b$	$\ell + b$	l (+j)	$\ell + b$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

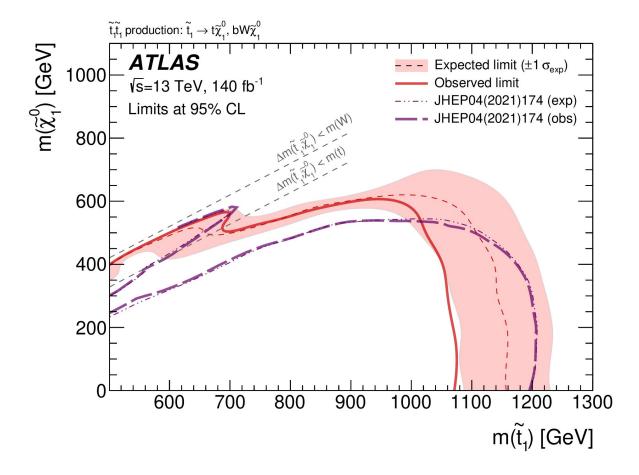
	stop-NN				DM-NN				
Category	CR	VR	SR		CR	VR	SR		
	Range	Range	Range	Eff.	Range	Range	Range	Eff.	
High-E ^{miss} _T 1b	[0.2, 0.64)	[0.64, 0.79]	[0.79, 1.0]	0.4-0.9	[0.3, 0.69)	[0.69, 0.87]	[0.87, 1.0]	0.3-0.4	
High-E ^{miss} _T 2b	[0.1, 0.56)	[0.56, 0.70)	[0.70, 1.0]	0.5-0.9	[0.3, 0.60)	[0.60, 0.76)	[0.76, 1.0]	0.6-0.8	
Boosted 1b-lep-1t	[0.0, 0.65)	[0.65, 0.80)	[0.80, 1.0]	0.5-0.9					
Boosted 1b-had-1t	[0.0, 0.65)	[0.65, 0.85)	[0.85, 1.0]	0.6-0.9					
Boosted 2b-1t	[0.0, 0.75)	[0.75, 0.95)	[0.95, 1.0]	0.6-0.8					
Boosted 1b-lep-0t	[0.0, 0.70)	[0.70, 0.85)	[0.85, 1.0]	0.6-0.8					
Boosted 1b-had-0t	[0.0, 0.75)	[0.75, 0.95)	[0.95, 1.0]	0.4-0.8					
Boosted 2b-0t	[0.0, 0.65)	[0.65, 0.80)	[0.80, 1.0]	0.6-0.9					

backup — tt+MET

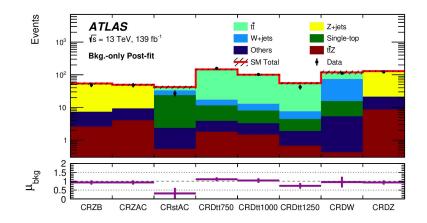
normalisation factors (high-MET regions)

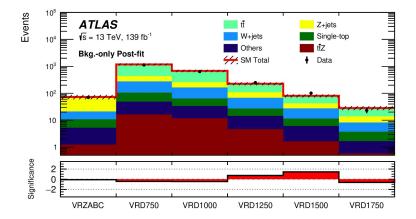
NF(tt1L)	NF(tt2L)	NF(W+jets)	NF(s.t.)
1.02 ± 0.06	1.09 ± 0.05	1.30 ± 0.15	1.4 ± 0.4

dominant uncertainties


	$\tilde{t}_1\tilde{t}_1, m(\tilde{t}_1$	$, ilde{\chi}_1^0)$ GeV	$t\bar{t}$ +DM, $m(a,\chi)$ Ge		
	(1000, 600)	(1200, 200)	(50, 1)	(150, 1)	
$\mu \pm \sigma(\mu)$ (total uncertainty)	$0.25^{+0.42}_{-0.25}$	$0.8^{+0.7}_{-0.5}$	$0.08^{+0.10}_{-0.08}$	$0.12^{+0.13}_{-0.12}$	
Data statistical uncertainty	82 %	74 %	67 %	69 %	
Background modelling	45 %	62 %	51 %	48 %	
MC statistical uncertainty	25 %	20 %	34 %	33 %	
Jet energy scale and resolution	20 %	13 %	29 %	28 %	
Flavour tagging efficiency	18 %	10 %	21 %	21 %	

constraints on effective ttvv contact interactions


Table 6: Constraints on effective $t\bar{t}v\bar{v}$ contact interactions involving all three generations of left-handed neutrinos based on the results of the $\tilde{t}_1\tilde{t}_1$ search. Constraints are set independently for different effective vector operators and for different hypotheses about the sign of the Wilson coefficient which leads to a constructive or destructive interference with $t\bar{t}Z(\rightarrow v\bar{v})$. Observed (expected) limits at 95% CL are reported for $\sqrt{|V_{ij}|}/\Lambda$ and for Λ , for the full phase space and for specified regions of the true invariant mass of the neutrino pair, assuming $|V_{ij}| = 4\pi$. Limits corresponding to $\pm 1\sigma$ variations of the expected limits are also reported.


Wilson coefficient	Observed (Expected) upper limit on $\sqrt{ V_{ij} }/\Lambda$ [TeV ⁻¹]	Observed (Expected) lower limit on Λ for $ V_{ij} = 4\pi$ [TeV]
$V_{LL} > 0$	$1.59(1.44_{1.31}^{1.58})$	$2.23(2.47^{2.71}_{2.25})$
$m_{\nu\bar{\nu}} < 1 \text{ TeV}$	$1.84(1.66^{1.82}_{1.51})$	$1.93(2.14^{2.35}_{1.95})$
$m_{\nu\bar{\nu}} < 2 \mathrm{TeV}$	$1.62(1.46^{1.61}_{1.36})$	$2.18\ (2.42^{2.66}_{2.21})$
$V_{LL} < 0$	$1.66(1.52^{1.66}_{1.40})$	$2.13(2.33^{2.53}_{2.14})$
$m_{\nu\bar{\nu}} < 1 \text{ TeV}$	$1.96(1.80^{1.95}_{1.66})$	$1.81 \ (1.97^{2.13}_{1.82})$
$m_{\nu\bar{\nu}} < 2 \mathrm{TeV}$	$1.70(1.56^{1.69}_{1.44})$	$2.08 \ (2.28^{2.47}_{2.10})$
$V_{LR} > 0$	$1.67 (1.53^{1.66}_{1.40})$	$2.12(2.32^{2.53}_{2.13})$
$m_{\nu\bar{\nu}} < 1 \text{ TeV}$	$1.92(1.78^{1.94}_{1.64})$	$1.84(1.99^{2.16}_{1.82})$
$m_{\nu\bar{\nu}} < 2 \mathrm{TeV}$	$1.70(1.56^{1.70}_{1.44})$	$2.08(2.27^{2.47}_{2.08})$
$V_{LR} < 0$	$1.63(1.49^{1.63}_{1.36})$	$2.17(2.38^{2.60}_{2.18})$
$m_{\nu\bar{\nu}} < 1 \mathrm{TeV}$	$1.86(1.72^{1.89}_{1.58})$	$1.91 \ (2.06^{2.25}_{1.88})$
$m_{\nu\bar{\nu}} < 2 \text{ TeV}$	$1.66(1.52^{1.67}_{1.40})$	$2.13(2.33^{2.54}_{2.13})$

backup — tt+MET comparison to previous analysis

backup — tc+MET postfit agreement in CRs and VRs

Large discrepancy and uncertainty in CRstAC driven by comparisons of DR vs DS schemes.

backup — tc+MET model-independent limits

Signal region	$\langle\epsilon\sigma angle_{ m obs}^{95}[{ m fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	$CL_{\rm B}$	$p_0(Z)$
SRA $(m_{\text{T2}}(j_{R=1.0}^{b}, c) \ge 450 \text{ GeV})$	0.10	14.4	$8.4^{+3.5}_{-1.9}$	0.94	0.02 (2.1)
SRA $(m_{\text{T2}}(j_{R=1,0}^{b}, c) \ge 575 \text{ GeV})$	0.07	9.4	$5.8^{+2.9}_{-1.2}$	0.89	0.04 (1.7)
SRB $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 100 \text{ GeV})$	0.17	24.1	$16.8^{+7.0}_{-5.2}$	0.85	0.09 (1.3)
SRB $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 150 \text{ GeV})$	0.16	22.8	$13.2^{+5.5}_{-3.6}$	0.95	0.03 (1.9)
SRB $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 400 \text{ GeV})$	0.08	11.3	$6.5^{+3.1}_{-1.6}$	0.92	0.04 (1.8)
SRC $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 100 {\rm GeV})$	0.09	12.6	$9.6^{+4.2}_{-2.1}$	0.76	0.22 (0.76)
SRC $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 150 {\rm GeV})$	0.09	11.9	$8.7^{+3.9}_{-1.9}$	0.81	0.15 (1.0)
SRC $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 300 {\rm GeV})$	0.08	11.0	$7.8^{+3.6}_{-1.7}$	0.83	0.13 (1.1)
SRC $(m_{\rm T}(j, E_{\rm T}^{\rm miss})_{\rm close} \ge 500 {\rm GeV})$	0.02	2.5	$4.0^{+2.4}_{-1.4}$	0.13	0.50 (0.00)
SRD $(m_{\text{eff}} \ge 750 \text{ GeV}, m_{\text{T}}(j, E_{\text{T}}^{\text{miss}})_{\text{close}} \ge 200 \text{ GeV})$	0.15	20.4	$18.5^{+8.4}_{-5.1}$	0.58	0.50 (0.00)
SRD ($m_{\text{eff}} \ge 1000 \text{ GeV}, m_{\text{T}}(j, E_{\text{T}}^{\text{miss}})_{\text{close}} \ge 200 \text{ GeV}$)	0.10	13.9	$13.7^{+3.5}_{-5.7}$	0.52	0.50 (0.00)
SRD ($m_{\rm eff} \ge 1250 {\rm GeV}$)	0.30	41	37_{-11}^{+12}	0.60	0.50 (0.00)
SRD ($m_{\rm eff} \ge 1500 {\rm GeV}$)	0.09	12.9	$14.6^{+6.3}_{-4.1}$	0.36	0.50 (0.00)
SRD ($m_{\rm eff} \ge 1750 {\rm GeV}$)	0.09	12.1	$9.1^{+3.9}_{-1.9}$	0.77	0.20 (0.84)
SRD ($m_{\rm eff} \ge 2000 \text{ GeV}$)	0.05	7.3	$5.6^{+3.0}_{-1.2}$	0.70	0.26 (0.64)