

arXiv: 2403.11715

Alexander Feike, Juri Fiaschi, Benjamin Fuks, Michael Klasen, Alexander Puck Neuwirth

SUSY 2024

11.06.2024

living.knowledge

Motivation

- \blacktriangleright SM is incomplete ightarrow SUSY might yield some answers
- no SUSY particles found, so far
- experimental analyses pushed the lower bounds on SUSY masses into the TeV regime (exact limits depend on the considered model)

our goal: push the mass limits even further by combining different CMS and ATLAS analyses

$$\begin{array}{ll} \text{relevant processes:} & p \ p \ \to \widetilde{\mathsf{q}} \ \widetilde{\tilde{\mathsf{q}}} \ (+j \ j) & p \ p \ \to \widetilde{\mathsf{q}} \ \widetilde{x}_1^0 \ (+j \ j) & p \ p \ \to \widetilde{x}_1^0 \ \widetilde{x}_1^0 \ (+j \ j) \\ & \text{decay:} & \widetilde{\mathsf{q}} \ \to q \ \widetilde{x}_1^0 \end{array}$$

Scenario: LSP Bino

- decouple all SUSY particles but \tilde{x}_1^0 and \tilde{u}_R
- b diagonal neutralino mixing $\tilde{x}_1^0 = \tilde{B}^0$
- $ightarrow m_{\widetilde{x}_1^0} < m_{\widetilde{q}}$

Scenario: LSP Bino

- decouple all SUSY particles but \tilde{x}_1^0 and \tilde{u}_R
- diagonal neutralino mixing $\tilde{x}_1^0 = \tilde{B}^0$

 $ightarrow m_{\widetilde{\chi}_1^0} < m_{\widetilde{\mathfrak{q}}}$

Combination and Reinterpretation of LHC SUSY Searches

Scenario: LSP Bino

- decouple all SUSY particles but \tilde{x}_1^0 and \tilde{u}_R
- diagonal neutralino mixing $\widetilde{x}_1^0 = \widetilde{B}^0$

 $ightarrow m_{\widetilde{\chi}_1^0} < m_{\widetilde{\mathsf{q}}}$

dashed=LO, solid=higher order

Combination and Reinterpretation of LHC SUSY Searches

Toolchain

Event Generation

Recasting Analyses

Combination

symmetric SR×SR matrix			
incorporating SRs from multiple			
anatyses			

		SR1	SR2	•••	SR(n - 1)	SR <i>n</i>
symmetric SR×SR matrix	SR1	$\begin{pmatrix} 1 \end{pmatrix}$	0.7		0.9	0.4
incorporating SRs from multiple	SR2	0.7	1		0.6	0.005
anatyses		:	:	·		:
	$\mathrm{SR}(n-1)$	0.9	0.6		1	0.8
	SR <i>n</i>	0.4	0.005		0.8	1 /

		SR1	SR2	•••	SR(n - 1)	SR <i>n</i>
symmetric SR×SR matrix	SR1	$\begin{pmatrix} 1 \end{pmatrix}$	0.7		0.9	0.4
incorporating SRs from multiple	SR2	0.7	1		0.6	0.005
anatyses	:	:	:	۰.	:	:
> set threshold $T \le 0.01$	SR(n-1)	0.9	0.6		1	0.8
	SR <i>n</i>	0.4	0.005		0.8	1)

		SR1	SR2	•••	SR(n - 1)	SR <i>n</i>
symmetric SR×SR matrix	SR1	$\begin{pmatrix} 1 \end{pmatrix}$	0.7		0.9	0.4
incorporating SRs from multiple	SR2	0.7	1		0.6	0.005
anatyses		:	÷	·		:
> set threshold $T \le 0.01$	$\mathrm{SR}(n-1)$	0.9	0.6		1	0.8
ATLAS and CMS SRs uncorrelated	SR <i>n</i>	0.4	0.005		0.8	1 /

- find most constraining combination of uncorrelated SRs
- assign weight \rightarrow log likelihood ratio
- 🕨 sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

Correlation matrix

find most constraining combination of uncorrelated SRs

- assign weight \rightarrow log likelihood ratio
- 🕨 sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

- find most constraining combination of uncorrelated SRs
- ▶ assign weight \rightarrow log likelihood ratio
- 🕨 sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

- find most constraining combination of uncorrelated SRs
- ▶ assign weight \rightarrow log likelihood ratio
- sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

- find most constraining combination of uncorrelated SRs
- ▶ assign weight \rightarrow log likelihood ratio
- sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

- find most constraining combination of uncorrelated SRs
- ▶ assign weight \rightarrow log likelihood ratio
- sort matrix & run PathFinder
- pass best combination to statistics tool Spey [arXiv: 2307.06996]

Single analysis exclusion

CMS-SUS-19-006

Combined analyses

Combined analyses

Conclusion

- ► recast LHC analyses in a simplified SUSY model considering $\tilde{q}\bar{\tilde{q}}$, $\tilde{x}_{1}^{0}\tilde{q}$ and $\tilde{x}_{1}^{0}\tilde{x}_{1}^{0}$ production
- successfully combined uncorrelated SRs from ATLAS and CMS
 - \rightarrow significant gain in exclusion power
- step towards maximizing information gain from existing data

Combination and Reinterpretation of LHC SUSY Searches

Backup

Versions, PDFs, etc.

program	version	PDF (N)LO	PDF higher order
MadGraph	MG5_aMC_v3_4_1	MSHT20lo_as130	
Resummino	3.1.1	MSHT20lo_as130	MSHT20nlo_as118
nllfast	nllfast-3.1	MSTW2008LO	MSTW2008NLO
nnllfast	nnllfast-1.1	NLO PDF4LHC15	NNLO PDF4LHC15
MadAnalysis	v1.10.9-beta		
Pythia8	pythia8306		

Event Generation

- 1. use MadGraph5 to create events
 - prevent double counting
 - only allow off-shell squarks within process
- 2. add parton shower with Pythia8
 - prevent double counting
 - jet merging with CKKW-L

 $p \ p \to \tilde{q} \ \bar{\tilde{q}} \ (+j \ j)$ $p \ p \to \tilde{q} \ \tilde{x}_1^0 \ (+j \ j)$ $p \ p \to \tilde{x}_1^0 \ \tilde{x}_1^0 \ (+j \ j)$ decay: $\tilde{q} \to q \ \tilde{x}_1^0$

Cross sections

$$\begin{split} pp &\to \tilde{x}_{1}^{0} \tilde{x}_{1}^{0} \quad \sigma = \sigma(\text{LO})_{\text{LO}}^{\text{MG}} \quad \frac{\sigma(\text{aNNLO+NNLL})_{\text{NLO}}^{\text{RS}}}{\sigma(\text{LO})_{\text{LO}}^{\text{RS}}} \\ pp &\to \tilde{x}_{1}^{0} \tilde{q} \quad \sigma = \sigma(\text{LO})_{\text{LO}}^{\text{MG}} \quad \frac{\sigma(\text{NLO+NLL})_{\text{NLO}}^{\text{RS}}}{\sigma(\text{LO})_{\text{LO}}^{\text{RS}}} \\ pp &\to \tilde{q} \bar{\tilde{q}} \quad \sigma = \sigma(\text{LO})_{\text{LO}}^{\text{MG}} \quad \frac{\sigma(\text{NLO}+\text{NLL})_{\text{NLO}}^{\text{RS}}}{\sigma(\text{LO})_{\text{LO}}^{\text{nllfast}}} \quad \frac{\sigma(\text{aNNLO+NNLL})_{\text{NNLO}}^{\text{nnllfast}}}{\sigma(\text{NLO})_{\text{NLO}}^{\text{nnllfast}}} \end{split}$$

Analyses

cuts	ATLAS-EXOT	ATLAS-CONF	CMS-SUS	CMS-EXO
veto	e, μ, τ, γ	e, μ	e, μ, γ	e, μ, τ, γ, b-jet
N _j	\geq 1	≥ 2	≥ 2	\geq 1
E_T^{miss}	$> 200 {\rm GeV}$	> 300 GeV	-	$> 250{ m GeV}$
n	< 2.4	-	< 2.4	< 2.4
$p_T(j_1)$	$> 150{ m GeV}$	$> 200 {\rm GeV}$	-	$> 100{ m GeV}$
$p_T(j_2,\ldots,j_{N_i})$	> 30 GeV	> 50 GeV	-	-
$\Delta \Phi(\text{jet}, \mathbf{p}_T^{\text{miss}})$	>0.4	> 0.2	>0.5	>0.5
$m_{\rm eff}$	-	> 800 GeV	-	-
H_T	-	-	>300 GeV	-
$ \vec{H}_T^{miss} $	-	-	>300 GeV	-

$$m_{
m eff} = E_T^{
m miss} + \sum_{p_T > 50 \;
m GeV} p_T(j)$$

$$H_T = \sum_{|n|<2.4} p_T(j)$$
$$\vec{H}_T^{\text{miss}} = \sum_{|n|<5} \vec{p}_T(j)$$