Dark Matter searches with Photons at the LHC

Subhojit Roy

Argonne National Laboratory

Based on JHEP04(2024)106 (arXiv:2401.08917)

In collaboration with Carlos Wagner

SUSY 2024

June 11, 2024

Outline

The nature of the DM stands out as a prominent challenge in theoretical particle physics and cosmology.

We focus to the electroweakino sector of NMSSM.

Singlino-dominated Dark Matter

Dark Matter spin-independent direct detection blind spot singlino-higgsino and singlino-bino co-annihilation scenarios

Focus to relatively unexplored parameter space of NMSSM

Radiative decay of the higgsino-like states Electroweakino searches involving photons at the LHC

Z_3 -symmetric NMSSM

Z₃-symmetric NMSSM superpotential: $\mathcal{W} = \mathcal{W}_{\text{MSSM}}|_{\mu=0} + \lambda \widehat{S}\widehat{H}_u.\widehat{H}_d + \frac{\kappa}{3}\widehat{S}^3$

Compared with MSSM,

NMSSM has extra two singlet-like scalars and one additional neutralino, known as singlino

The symmetric neutralino mass matrix has got a dimensionality of 5×5 and, in the basis $\psi^0 = \{\widetilde{B}, \ \widetilde{W}^0, \ \widetilde{H}^0_d, \ \widetilde{H}^0_u, \ \widetilde{S}\}$, is given by

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -\frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{1}v_{u}}{\sqrt{2}} & 0\\ & M_{2} & \frac{g_{2}v_{d}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & 0\\ & 0 & -\mu_{\text{eff}} & -\lambda v_{u}\\ & & 0 & -\lambda v_{d}\\ & & & 2\kappa v_{s} \end{pmatrix}$$

 $M_1,\,M_2\to$ soft SUSY breaking masses for the $U(1)_Y$ and the $SU(2)_L$ gauginos, i.e., the bino and the wino, respectively.

$$m_{_{\widetilde{S}}} = 2\kappa v_{_S} = 2rac{\kappa}{\lambda}\mu_{\mathrm{eff}}
ightarrow \mathrm{singlino}$$
 mass term.

Charginos $(\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm})$ =mass eigenstates of $(\widetilde{W}^{\pm}, \widetilde{H}_{u/d}^{\pm})$

 $\begin{pmatrix} M_2 & \sqrt{2}m_W c_\beta \\ \sqrt{2}m_W s_\beta & \mu \end{pmatrix}$

In order to comply with the observed relic abundance, we focus to the co-annihilation mechanism of singlino-dominated DM.

For co-annihilation to function, the mass gap between the DM and other weakly interacting particles must be minimal relatively small ==> compressed scenario at the LHC

Possibly \tilde{S} -like LSP admixtures with \tilde{B} and \tilde{H}

==> 'well-tempered' singlino-like LSP

sensitive to DM Direct detection experiments

Singlino-dominated DM direct detection blind spot (spin-independent)

[Singlino-dominated neutralino is tempered by the bino-like and higgsino-like states]

→ (3x3) CP-even Higgs diagonalizing matrix

$$g_{h_i \chi_1^0 \chi_1^0} = \sqrt{2\lambda} (S_{i1} N_{14} + S_{i2} N_{13}) N_{15} + \sqrt{2\lambda} S_{i3} (N_{13} N_{14} - \frac{\kappa}{\lambda} N_{15}^2)$$

+ $(g_1N_{11} - g_2N_{12})(S_{i1}N_{13} - S_{i2}N_{14}).$

Coupling blind spot: $g_{h_{SM}\chi_1^0\chi_1^0} \sim 0 \Longrightarrow \left(m_{\chi_1^0} + \frac{g_1^2 v^2}{M_1 - m_{\chi_1^0}} \right) \frac{1}{\mu_{\text{eff}} \sin 2\beta} \simeq 1$ Blind spot favorable criteria:

Neutralino radiative decay

When a two-body decay mode is kinematically closed, the possibility arises for the radiative one-loop branching ratio to be higher compared to the three-body tree-level decay branching ratio.

Mass splitting parameter,
$$\varepsilon \equiv \frac{m_{\chi^0_2}}{m_{\chi^0_2}} - 1$$

Tree-level decays are suppressed as $\Gamma(\chi_2^0 \to \chi_1^0 + f\bar{f}) \propto \varepsilon^5$, while the radiative decays are suppressed as $\Gamma(\chi_2^0 \to \chi_1^0 + \gamma) \propto \varepsilon^3$

hep-ph/9609212

Therefore, radiative decays play an important role in the compressed region.

Decay chains of Higgsino-like states

Singlino-higgsino coannihilation scenario:

Level diagrams of neutralino hierarchies with higgsino-like NLSP

Singlino-bino coannihilation scenario:

Level diagrams of neutralino hierarchies with Bino-like NLSP

 $pp \rightarrow \chi^0_{3,4}(\widetilde{H})\chi^{\pm}_1(\widetilde{H}) \rightarrow h_{\rm SM}/Z + W^{\pm} + \chi^0_2(\widetilde{B}) \left[\chi^0_2 \rightarrow \gamma \chi^0_1(\widetilde{S})\right] \Rightarrow 3\ell + \geq 1\gamma + \not\!\!\!\!E_T \text{ or } 1\ell + 2b + \geq 1\gamma + \not\!\!\!\!\!E_T$

p

p

Singlino-bino co-annihilation excluded scenario

λ	κ	aneta	$\mu_{ m eff} \ ({ m GeV})$	$\begin{array}{c} M_1 \\ (\text{GeV}) \end{array}$	$\begin{bmatrix} m_{\chi^0_1}, m_{\chi^0_2} \\ (\text{GeV}) \end{bmatrix}$	$egin{array}{c} m_{\chi^0_{3,4}} \ ({ m GeV}) \end{array}$	$\begin{bmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ ({\rm GeV}) \end{bmatrix}$
0.0964	0.0062	10.06	-418.5	66.4	-55.5,66.0	~ 433	49,125,50

${\rm BR}(\chi^0_2\to\chi^0_1\gamma)$	${ m BR}(\chi^0_3 o \chi^0_2 h_{ m SM}/Z)$	${ m BR}(\chi_4^0 o \chi_2^0 h_{ m SM}/Z)$
0.995	0.87	0.86

$\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm}_1}$ (pb)	0.0418
CheckMATE result	Excluded
r-value	2.87
Analysis ID	$atlas_{2004_{-}10894}$
Signal region ID	$\operatorname{Cat} 12$

Excluded by the ATLAS analysis (arXiv:2004.10894) for the search of chargino-neutralinos by studying the di-photon decay channel of the on-shell h_{SM} coming from the decay of heavier neutralino.

Although not dedicated to co-annihilation, this ATLAS analysis gains sensitivity to singlino-bino coannihilation through signal region overlap, featuring final states with leptons, jets, photons, and missing energy.

Due to large mass gap between M_1 and $\mu_{\rm eff}$, bino-like NLSP emerges with a boost.

→ The tail of the $m_{\gamma\gamma}$ of two photons from the process $pp \rightarrow \chi_1^{\pm} \chi_{3,4}^0$ broadens relatively and lies around the mass window of h_{SM} , which is considered in the selection cuts of this ATLAS analysis.

Singlino-bino co-annihilation allowed scenario

BP1

BP2

λ	κ	aneta	$\mu_{ m eff} \ ({ m GeV})$	M_1 (GeV	$V) \begin{vmatrix} m_{\chi_1^0}, m_{\chi_2^0} \\ (\text{GeV}) \end{vmatrix}$	$\begin{array}{ c c c c c } & m_{\chi_{3,4}^0}, m_{\chi_1^\pm} \\ & ({\rm GeV}) \end{array}$	$\begin{array}{c} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ ({\rm GeV}) \end{array}$
0.0964	0.0038	7	-700	66	-56.8, 65.8	~715	50,125,171
			BR $(\chi_2^0$ -	$BR(\chi_2^0 \to \chi_1^0 \gamma) \mid BR(\chi_3^0 \to \chi_2^0 h_{\rm SM}/Z) \mid$		$BR(\chi_4^0 \to \chi_2^0 h_{\rm SM}/.$	$Z) BR(\chi_1^{\pm} \to \chi_2^0 W^{\pm})$
			0.8	8	0.88	0.87	0.87
λ	κ	aneta	$\mu_{ m eff}$ (GeV)	M_1 (GeV	(GeV) $m_{\chi_1^0}, m_{\chi_2^0}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ (\text{GeV}) \end{bmatrix}$
0.2086	0.0118	6	-525	-91.	6 -67.7, -92.2	$2 \sim 540$	70, 125, 64
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			${ m BR}(\chi_4^0 o \chi_2^0 h_{ m SM}/2)$	Z) $BR(\chi_1^{\pm} \to \chi_2^0 W^{\pm})$

BP1

$\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm (\text{pb})}_{1}}$	0.00425	0.01577
CheckMATE result	Allowed	Allowed
r-value	0.68	0.61
Analysis ID	$atlas_2004_10894$	$atlas_2004_10894$
Signal region ID	$\operatorname{Cat} 12$	$\operatorname{Cat} 12$

Differential event distributions

Singlino-Higgsino coannihilation scenario

λ	κ	aneta	μ_{eff} (GeV) M_1 (GeV)	$\begin{array}{ c c }\hline m_{\chi_1^0} \\ ({\rm GeV}) \end{array}$	$ \begin{bmatrix} m_{\chi^0_{2,3}}, m_{\chi^\pm_1} \\ (\text{GeV}) \end{bmatrix} $	$\begin{array}{c c} m_{\chi_4^0} \\ (\text{GeV}) \end{array}$	$\begin{bmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ ({\rm GeV}) \end{bmatrix}$
0.067	0.0316	6	-307	509.2	-296	~ 312	~ 510	202,125,36
BP3		3	$\frac{\mathrm{BR}(\chi_2^0 \rightarrow 0.63)}{0.63}$	$\chi_1^0\gamma)$	$\frac{\mathrm{BR}(\chi_3^0 \to \chi_2^0 \gamma)}{0.86}$	() BR()	$\frac{\chi_1^{\pm} \to \chi_2^0 f \bar{f})}{0.57}$	

λ	κ	aneta	$\mu_{ m eff} \ ({ m GeV})$	$\begin{array}{c} M_1 \\ (\text{GeV}) \end{array}$	$\frac{m_{\chi_1^0}}{({\rm GeV})}$	$m_{\chi^0_{2,3}}, m_{\chi^\pm_1} \ ({ m GeV})$	$m_{\chi^0_4} \ ({ m GeV})$	$\begin{array}{c} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ ({\rm GeV}) \end{array}$
0.018	-0.0083	8.8	-198	-350	-188	~ 200	~ -355	178,125,83

BP4	$\mathrm{BR}(\chi_2^0 \to \chi_1^0 \gamma)$	${\rm BR}(\chi^0_3\to\chi^0_2\gamma)$	$BR(\chi_1^{\pm} \to \chi_2^0 f\bar{f})$
	0.73	0.92	0.80

BP3

BP4

$\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm}_1 (\text{pb})}$	0.140	0.743
CheckMATE $result$	Allowed	Allowed
r-value	0.07	0.12
Analysis ID	$atlas_conf_2017_060$	$atlas_conf_2020_048$
Signal region ID	EM7	EM09

Singlino-Higgsino coannihilation scenario with a hard ISR

 $\chi_1^{\pm} \operatorname{and} \chi_{2,3}^0$ would primarily be produced at the LHC with equal and opposite P_T

In the presence of the ISR jet, $(\chi_1^{\pm}\chi_{2,3}^0)$ system recoils against the ISR jet in the transverse plane.

Peak of E_T distribution occurs at a relatively higher value for the process involving the ISR jet.

Additionally, a broad high $\not\!\!E_T$ tail is observed for events containing one ISR jet.

This characteristic allows for more aggressive selection cuts on E_T in the analysis, effectively rejecting a significant amount of the SM backgrounds at a moderate cost in losing signal events.

Similar broader high P_T tail of the leading jet is also observed in events containing one ISR jet.

Correlation between P_T^{jet} and $\not\!\!\!E_T$ in events with one ISR jet,

→ imposing a stringent cut on $\not\!\!\!E_T > 100 \,\text{GeV}$ ensures that most signal events have substantially larger $P_T^{\text{jet}} \gtrsim 100 \,\text{GeV}$

Differential event distributions

The presence of a single ISR jet in the events under those specified cuts $\not\!\!E_T$, $P_T^{\text{jet}} > 100 \,\text{GeV}$ leads to a notable increase in the number of events at the peak of the distribution and a broadening of the high P_T^{γ} tail.

A substantial drop in the cross-section of the process in the absence of any ISR jet under such cuts.

Distribution exhibits a peak at a slightly higher P_T^{γ} when the ISR jet is considered

→ suggesting an overall transverse boost for the photon This can be understood from the fact that if the decaying photon from $\chi^0_{2,3}$ originated in the same direction in which $\chi^0_{2,3}$ are produced and boosted due to large P_T of the ISR jet in the event.

ATLAS and CMS reported mild excesses in electroweakino searches

Light singlino-Higgsino region of NMSSM — Agin et al. arXiv:2404.12423, Ellwanger et al. arXiv:2404.19338

Recently, a paper by Agin et al. (arXiv:2311.17149) claims that the current monojet searches (arXiv: 2102.10874, 2107.13021) show excesses in a region that partially overlaps with that favored by the soft-lepton analyses.

It may be feasible to explain these excesses in the soft lepton channels within the context of the singlino-higgsino co-annihilation scenarios discussed in our work.

Such a co-annihilation scenario can also indicate another possible detection channel involving photons.

A dedicated analysis can be done using the exiting Run 2 data of LHC

Conclusion

- A new blind spot condition $\kappa < 0$ for singlino-dominated dark matter resulting from bino and higgsino tempering.
- This blind spot condition demads same relative sign between M_1 and μ_{eff} , which generates a positive contribution from the Bino-smuon loop to a_μ .
- Higgsino-like states prefer radiative decay
- The compressed scenario is emerging as a promising WIMP-DM candidate, being explored through combined LHC and direct detection efforts.
- Here, we suggest a new radiative decay search for higgsino-like neutralinos in the singlino-higgsino coannihilation scenario, complementing current multilepton searches.
- For the singlino-higgsino scenario, consider a hard ISR jet with $pp \to \chi_1^{\pm} \chi_{2,3}^0$ process Select signal region with a hard mono-jet with significant missing energy and at least one photon.
- For the case of singlino-bino scenario, photons can become relatively hard due large mass difference between higgsino-like states and bino-like NLSP.

This scenario could leads to $3\ell + \ge 1\gamma + \not\!\!\!E_T$ or $1\ell + 2b + \ge 1\gamma + \not\!\!\!\!E_T$ final states at the LHC.

Thank you