General Searches For Compressed SUSY With the CMS Detector

Andrés Abreu On Behalf of the CMS Collaboration University Of Kansas

SUSY2024 Conference Thursday, June 13 2024

Compressed SUSY Searches

Andrés Abreu

SUSY2024

- Searches for **compressed SUSY** at the \odot electroweak scale:
 - Small Δm between parent sparticle and LSP is well-motivated.
 - LSP $(\tilde{\chi}_1^0)$ is a viable candidate for **dark** matter.
- Compressed SUSY is challenging, with lot of unexplored phase-space.
- Three different analyses discussed.

CMS Analyses In This Talk

- fb^{-1} .
- Analyses discussed:
 - Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} = 13$ TeV - <u>http://arxiv.org/abs/2307.16216</u>
 - Combined search for electroweak production of winos, binos, higgsinos, and sleptons in proton-proton collisions at $\sqrt{s} = 13$ TeV - <u>https://arxiv.org/abs/</u> 2402.01888
 - General search for supersymmetric particles with compressed mass spectra in proton-proton collisions at $\sqrt{s} = 13$ TeV (**Currently undergoing approval**).

• Data obtained during CMS Run II (2016-2018) with Integrated Luminosity of 138

SUSY2024

Compressed Mass Spectra SUSY

Andrés Abreu

- Decay where Parent sparticle (electroweakinos, stops and sleptons) and LSP are close in mass.
- Very **difficult to probe** with traditional methods:
 - Low-momentum decay products:
 - Soft visible particles and small missing energy.
 - Indistinguishable from **SM background**.
- Can use a commonly occurring natural process to overcome these difficulties!

SUSY2024

Natural Solution: Initial-State Radiation

Andrés Abreu

SUSY2024

• Use events accompanied by jets from initialstate radiation (ISR):

• ISR jets are **very common** at the LHC.

• Recoil from ISR can "kick" the system leading to significant missing energy.

• Direct correlation between p_T^{ISR} and p_T^{LSP} .

• All analyses discussed here include ISR jets (some implicitly).

Search For Top Squarks

 $\tilde{t} \to b f \bar{f}' \tilde{\chi}_1^0$

 $N_{\rm t}, N_{\rm W}, N_{\rm res}$ $N_{\rm t} = N_{\rm W} = N_{\rm res} = 0$ $m_{
m T}^{
m b}$ $m_{\rm T}^{\rm b} < 175 \,{\rm GeV}$ (for events with $N_{\rm b} \ge 1$) $N_{\rm i}({\rm ISR}) = 1$ (R = 0.8), $p_{\rm T}^{\rm ISR} > 200 \,{\rm GeV}$, $|\eta| < 2.4$ ISR jet $\Delta \phi \left(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j}_{\mathrm{ISR}} \right) > 2$ **SUS-19-010** $p_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} > 10 \sqrt{\rm GeV}$ $p_{\rm T}^{\rm miss}$ arXiv:2103.01290

 $\tilde{t} \to c \, \tilde{\chi}_1^0$

SUSY2024

Andrés Abreu

• Models with small $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$ align with dark matter relic density predictions.

• Final State: Fully-hadronic.

• Signal regions divided into **low** and high Δm .

Low Δm baseline selection

Search for Top Squarks: Low Δm Strategy

- - Specialized algorithm for identifying soft bquarks ($p_T < 20$ GeV).
 - search bins sensitive to the 53/183 IOW Δm region.

• Targets models where $\Delta m(\tilde{t}, \tilde{\chi}_1^0) < m_W$:

 Events with ISR identified from large jets must fail the b-tagging ID.

• Uses W and top-tagger to veto events with on-shell W bosons and top quark jets.

SUSY2024

Search for Top Squarks: Low Δm Search Regions

Andrés Abreu

Thursday, June 13 2024

SUSY2024

8

Search For Top Squarks - Results

Andrés Abreu

SUSY2024

Combined Search For Electroweak SUSY

Sleptons

- Targets both compressed and uncompressed SUSY.
- Example final states included:
 - One lepton, 2 b jets and p_T^{miss} .
 - Oppositely charged same-flavor lepton pair and
 - 2 or 3 soft leptons and jets.

SUSY2024

SUS-21-008 arXiv:2402.01888

 $\cdots \widetilde{\gamma}_1^0$

Andrés Abreu

• Combination of several searches of electroweak **SUSY** in different final states.

Search for 2 or 3 Soft Leptons - Strategy

Andrés Abreu

SUSY2024

- At least one OSSF lepton pair, jets and p_T^{miss} :
 - $p_T < 30$ GeV, with min value at 3.5 (5) GeV for muons (electrons).
- Discriminating Variables: $m_{\ell\ell}$ (electroweakino) and m_{T2} (sleptons).
- Background Suppression: Exclude specific m_{ℓ} ranges to veto J/Ψ and Υ .
 - Low- p_{T}^{miss} Med- p_{T}^{miss} High- p_{T}^{miss} Ultrahigh- $p_{\rm T}^{\rm miss}$ $p_{\mathrm{T}}^{\mathrm{miss},\,\mathrm{corr}}$ $p_{\mathrm{T}}^{\mathrm{miss},\,\mathrm{corr}}$ $p_{\rm T}^{\rm miss,\, corr}$ $p_{\mathrm{T}}^{\mathrm{miss,\,corr}}$ $2\ell \text{ soft } [125,200]$ [200,240] [240, 290] >290 $3\ell \text{ soft } [125, 200]$ >200

Search for 2 or 3 Soft Leptons - Strategy

- $p_T < 30$ GeV, with min value at 3.5 (5) GeV for muons (electrons).
- Discriminating Variables: $m_{\ell\ell}$ (electroweakino) and m_{T2} (sleptons).
- Background Suppression: Exclude specific $m_{\ell\ell}$ ranges to veto J/Ψ and Υ .

Low- p_{T}^{miss} Med- p_{T}^{miss} High- p_{T}^{miss} Ultrahigh- p_{T}^{miss} SR $p_{\mathrm{T}}^{\mathrm{miss},\,\mathrm{corr}}$ $p_{\mathrm{T}}^{\mathrm{miss},\,\mathrm{corr}}$ $p_{\mathrm{T}}^{\mathrm{miss},\,\mathrm{corr}}$ $p_{\mathrm{T}}^{\mathrm{miss, \, corr}}$ [200, 240][240, 290][125,200] >290 2ℓ soft [125, 200]>200 3ℓ soft

Andrés Abreu

• At least one OSSF lepton pair, jets and p_T^{miss} :

SUSY2024

Search for 2 or 3 "Soft" Leptons - Results

Andrés Abreu

Thursday, June 13 2024

95% CL Upper limit on cross section [fb]

New Analysis Strategy on CMS Using RJR Results not yet available

General Search For SUSY With RJR

- - Novel analysis strategy on CMS:
 - leptons + jets).
 - characteristics.
 - Relevant objects (soft visible objects and p_T^{miss}):
 - **vertices** (uses **custom made NN** to tag SVs with $2 \le p_T < 20$ GeV).

• General search for compressed SUSY using recursive jigsaw reconstruction (RJR):

• Simultaneous search for many signal models in any final state (0, 1, 2 and 3

Allows for definition of signal variables that exploit compressed SUSY

• leptons (p_T as low as 3 GeV for muons), b-tagged jets and soft secondary-

SUSY2024

General Search For SUSY With RJR

Andrés Abreu

- General signal template with compressed SUSY characteristics:
 - Viewed from **center-of-mass system**.
 - **Sparticle system** (S) recoiling from ISR radiation.
 - Sparticle system decays into pair of sparticles $(\mathbf{P}_{a/b}).$
 - Each parent decays into an invisible (I_{a/b}) and a visible (V_{a/b}) system.
- Set of kinematic and combinatoric unknowns resolved with **RJR**.

Event Model: The RJR Algorithm

Transform from lab to CM frame

Andrés Abreu

Comprehensive Exam

Distribute visible objects between ISR and S

Assign visible objects to V_{a/b} systems

Friday, May 13 2022

Kinematic Variables: R_{ISR}

 Take advantage of features of compressed SUSY at the CM frame:

Andrés Abreu

 Correlation between the ISR system and the \vec{p}_T^{miss} of the event:

<u>Phys. Rev. D 95, 035031 (2017)</u>

SUSY2024

Kinematic Variables: R_{ISR} and p_T^{ISR}

Background

Andrés Abreu

Summary

- Compressed SUSY is compelling and theoretically well-motivated.
- **Difficulties** associated with compressed SUSY can be mitigated:
 - Require **ISR radiation** in the event.
 - Use specialized soft b/SV tagging algorithms.
- \odot
 - Analysis On CMS Data Underway!

RJR Analysis: Generically sensitive for many signal models, in every final state:

Backup

Search for Top Squarks: Low Δm Search Regions

$N_{\rm j}$	$N_{\rm b}$	$N_{ m SV}$	m _T ^b [GeV]	$p_{\rm T}^{\rm ISR}$ [GeV]	$p_{\rm T}^{\rm b}$ [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]	Bin number
2–5	0	0		>500		[450, 550, 650, 750, ∞]	0–3
≥ 6	0	0		>500		$[450, 550, 650, 750, \infty]$	4–7
2–5	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	8–11
≥ 6	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	12–15
≥ 2	1	0	<175	300–500	20–40	[300, 400, 500, 600, ∞]	16–19
≥ 2	1	0	<175	300–500	40–70	[300, 400, 500, 600, ∞]	20–23
≥ 2	1	0	<175	>500	20–40	$[450, 550, 650, 750, \infty]$	24–27
≥ 2	1	0	<175	>500	40–70	$[450, 550, 650, 750, \infty]$	28–31
≥ 2	1	≥ 1	<175	>300	20–40	[300, 400, 500, ∞]	32–34
≥ 2	≥2		<175	300–500	40-80	[300, 400, 500, ∞]	35–37
≥ 2	≥ 2		<175	300–500	80–140	[300, 400, 500, ∞]	38–40
≥ 7	≥ 2		<175	300–500	>140	[300, 400, 500, ∞]	41–43
≥ 2	≥ 2		<175	>500	40-80	$[450, 550, 650, \infty]$	44–46
≥ 2	≥ 2		<175	>500	80–140	$[450, 550, 650, \infty]$	47–49
≥ 7	≥ 2		<175	>300	>140	$[450, 550, 650, \infty]$	50–52

Andrés Abreu

Thursday, June 13 2024

22

Event Model: The RJR Algorithm

Andrés Abreu

$$\mathbf{R} = \operatorname*{argmax}_{\mathbf{V},\mathbf{ISR}} p_{\mathbf{S}}^{\mathbf{CM}}$$

Comprehensive Exam

Friday, May 13 2022

