Recent searches for electroweak production and 3rd generation SUSY particles with CMS

SUSY 2024

Madrid, 9th-14th June 2024

P. Martinez on behalf of the CMS collaboration

Electroweak SUSY: a challenging business

- Direct production of gauginos or sleptons is well motivated theoretically in many models
- > However electroweak SUSY is expected to have small cross sections, especially for sleptons
- > In addition, there are several SM processes with similar kinematics and large cross-sections

Electroweakino Combination

- Several EWK searches have been combined using the full Run 2 dataset in CMS
 - > Wino-like chargino/neutralino decaying via bino-like neutralino
 - Neutralino pair production in GMSB, quasi degenerate Higgsinos
 - Higgsino Chargino/neutralino decaying via bino-like neutralino
 - Slepton pair production
- * The combination includes also improvements in some of the analysis
 - > Two 2/3 soft lepton analysis has been optimized (see later)

10.1103/Phys.Rev.D.109.112001

 $\widetilde{\chi}_1^0$

 $\widetilde{\chi}_1^0$

 W^{\pm}

P. Martinez/IFCA

Hadr. WX [76]

all

all

Recent searches for electroweak production and 3rd generation SUSY particles with CMS

ex H

ex H

Input analyses in a nutshell

- > Two-Three lepton soft analysis
 - > 2 opposite sign same flavour "2l bin"
 - > 1 additional SF (e, mu) → "3l bin"
 - 3.5 (5)<p_T(lep)<30 GeV for 2l (3l) + ISR jet</p>
 - > SR regions binned in terms of p_T^{miss} and m_{ll}
- > Two lepton on-Z/non resonant
 - > 2 Opposite sign same flavour
 - Additional binning in p_T^{miss}
 - > On-Z: 86< m_{ll} <96 GeV+ jets (AK4 and AK8)
 - $\,\,$ Off-Z: 20 < $m_{\rm ll}$ < 65 GeV and $m_{\rm ll}$ > 120 GeV
- > Two Same Sign or Three leptons or more
 - ee/mm or 3/4l with up to 2 hadronic taus
 - → $P_T^{l1} > 25 \text{ GeV}$, $p_T^{l2} > 20 \text{ GeV}$

- Single lepton + 2 b
 - P_T^{l1} >30 GeV and large p_T^{miss}
 - > 2 b jets consistent with Higgs mass
- Four b
 - > No leptons. Two H \rightarrow bb bosons.
 - Boosted topologies using AK8 jets
 - $\,\,$ Signal Regions based on $N_{\text{b-jets}}$
- Hadronic WX:
 - > >= 2 AK8 jets compatible with W,Z,H
 - > Using DEEPAK8 tagger
 - > 2-6 AK4 jets

Orthogonality among analysis ensured

Low p_T miss – 3l soft

- > Analyses optimized w.r.t. (JHEP04(2022)09) by adjusting the binning for each mass splitting
- > Using m_{II} as discriminating variable for each Δm and signal region, $M_{T2}(II, X)$ for sleptons
- Expected exclusion of N-LSP improved by 5-25 GeV

 $Medium \ p_T \ miss - 2l \ soft$

Chargino/neutralino production in WZ/WH

- > Uncompressed region dominated by Hadronic WX analysis
- Compressed region: 2/3l soft analysis (>=3l) in the WZ (WH) models
- Large improvement with respect to 2016 combination

Chargino/neutralino production in WZ

(compressed)

- > Both 2/3l soft and 2SSl >= 3l analyses complement each other
 - Orthogonal lepton p_T range for each of them
- $^{\scriptscriptstyle >}$ Observed limits closing the gap at $\Delta m{\sim}30~GeV$
 - > Two σ excess found in that region

P. Martinez/IFCA

Chargino/neutralino production in GMSB

- > In these GMSB models the gravitino mass is fixed to 1 GeV
- > Exclusion limits are given in terms of $B(X_1^0 \rightarrow H\widetilde{G})$
 - At large branching ratio the 4b analysis has larger sensitivity
 - At small branching ratio the 2l on-Z analysis dominates

Chargino/neutralino production in Higgsino-bin

- > Targetting WW, HH or WH final states
 - ▷ $B(X_1^{+/-} \rightarrow WX_1^0) = 100\%$
 - ▷ $B(X_{2,3}^{0} \rightarrow HX_{1}^{0}) = 100\%$
- Large sensitivity to uncompressed spectra
- [>] WW channel dominated by Hadr. WX analysis
- > HH channel dominated by the 4b analysis
- > WH channel with large contributions from:
 - Hadr. WX + 4b + 3 leptons

Slepton production

- Slepton production particularly challenging due to small cross sections
 - > Only 1st and 2nd generations covered here (see next slides for staus)
- Compressed signatures dominated by 2/3l soft analysis
- Non-compressed scenarios dominated by 2l non-resonant

Prompt/Displaced stau production

 $p_{\mathrm{T}}^{\tau_{\mathrm{h},1}}$ [GeV]

<90

Prompt SRs

 N_i = 0

 $\Sigma m_{\rm T}$ [GeV]

200 - 250

SR bin

1

2

m_{T2} [GeV]

25 - 50

- * A search for direct production of staus prompt and slightly displaced ~ 2.5 mm (full Run2 data)
- \sim Basic selection: 2 hadronically decaying taus + large m_{T2} and Σ m_T
- [>] Background dominated by missidentified taus from QCD events

Prompt/Displaced stau production: interpretation

- Exclusion for pure left-handed staus in the range m(stau) ~ 115-340 GeV
- * Exclusion for degenerate staus up to m(stau) ~ 400 GeV
- > The most stringent observed limits for direct prompt staus
- > Staus with $c\tau$ =0.1mm excluded in the range m(stau) ~ 150-220 GeV

P. Martinez/IFCA

Conclusions

- > Electroweak production has been extensively searched for with the Run 2 dataset in CMS
- Large gains coming from the combination of different signatures and analyses
 - And large effort to design Signal Regions without overlaping
 - Many lessons learned in this process
- Focus is now on Run 3 data → Please stay tuned!