Seeking a coherent explanation of LHC excesses for compressed spectra

Taylor Murphy

Laboratoire de Physique Théorique et Hautes Énergies Sorbonne Université & CNRS

11 June 2024

Based on arXiv:2404.12423 in collaboration with D. Agin B. Fuks and M. D. Goodsell Small excesses in $2\ell + E_{\mathrm{T}}^{\mathrm{miss}}...$

• ATLAS and CMS target compressed EWinos in soft leptons $(2/3\ell) + E_{\rm T}^{\rm miss}$ channels [1, 2, 3, 4, 5]

- Results interpreted for pure higgsino or wino LSP
- 2ℓ analyses show 1– 2σ excesses corresponding to $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 10$ –30 GeV

 \Box Overlapping excesses in the monojet channel [6, 7, 8]?

Recasting the ATLAS $2/3\ell$ analyses

- ATLAS-SUSY-2018-16: 2ℓ and 1ℓ1T electroweakino channels are recast in HACKANALYSIS (HA) v2
- Multiple technical challenges:
 - \square RJR variables require RESTFRAMES [9], thus root
 - $\hfill\square$ Results are sensitive to $m_{\ell\ell}$ distributions so that Pythia 8 cannot be used to handle the three-body electroweakino decays
 - □ Signal efficiencies are of $\mathcal{O}(10^{-5})$, requiring large samples
- ATLAS-SUSY-2019-09: off-shellWZ
 3ℓ selection is recast in HA
 - $\hfill\square$ Lepton reconstruction efficiencies are scraped
 - \Box Object-based $E_{\rm T}^{\rm miss}$ significance computed in HA using momentum resolution uncertainties taken from ATLAS [10, 11]
- Validations use ATLAS cutflows and reproduced exclusion plots; agreement is excellent

SIMULATION AND ANALYSIS TOOLCHAIN

- Relevant processes simulated in each model as follows:
 - □ Hard events with \leq 2 hard jets generated using MG5_AMC, including full decay chains in matrix elements
 - $\hfill\square$ Matching, showering, and hadronization performed with PYTHIA 8
 - Normalizations computed at best available accuracy; for MSSM we use RESUMMINO [12] at NLO + NLL
- Samples range in size from 3.2 M to 20 M events per parameter point, with $\mathcal{O}(10)$ - $\mathcal{O}(100)$ points considered for each model
- ATLAS and CMS monojet searches implemented in MADANALYSIS 5 and available on the Public Analysis Database (PAD), but ported to HA v2 to streamline the workflow
- Efficiencies computed by HA; statistical analysis performed by SPEY [13]

ATLAS-SUSY-2018-16 VALIDATION

ATLAS-SUSY-2019-09 VALIDATION

WHAT'S THE PLAN?

- With validated ATLAS 2/3ℓ recasts (and monojets, with caveats), we can try to find suitable models
 - $\hfill\square$ Why not also try to produce a dark matter candidate?
 - $\hfill\square$ Other minimal (ish) SUSY scenarios seem like good candidates
 - $\hfill\square$ What about non-SUSY models with different topologies? $m_{\ell\ell}$ distributions should differ
- Four candidate models: scan parameter spaces to find suitable spectra, compute LHC cross sections and (where applicable) Ωh^2 , apply recasts
- For each model and each analysis compute expected/observed limits at 95% CL
- Identify a best-fit point $(\hat{\mu} \approx 1)$ and a significant point (lowest *p*-value); if we get lucky, we can find points with good fit and significance for all analyses

CANDIDATE 1: MSSM with decoupled higgsinos

- Already looked at simplified (pure) higgsinos; ATLAS interpreted soft leptons for simplified bino-wino LSP
 - Bino-winos not symmetric like higgsinos; instead $m_{\tilde{\chi}_1^0} < m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_2^0}$
 - Mixing and decays fixed, curiously with 2–10% higgsino admixture; physical masses changed by hand
- (Mostly) bino LSP is a viable DM candidate, with coannihilations important in the parameter space relevant to soft-lepton analyses
- Straighforward to perform a "realistic" scan over (M_1, M_2)
- Higgsinos decoupled with $\mu = 2$ TeV; first- and second-generation sfermions taken to $\mathcal{O}(10)$ TeV for simplicity

CANDIDATE 2: NMSSM WITH SINGLINO LSP

-1

• $MSSM + singlet superfield \rightarrow five neutralinos:$

$$\mathcal{W} \supset \mu \mathcal{H}_{\mathrm{u}} \mathcal{H}_{\mathrm{d}}
ightarrow \mathcal{W}_{\mathrm{NMSSM}} \supset \lambda \mathcal{S} \mathcal{H}_{\mathrm{u}} \mathcal{H}_{\mathrm{d}} + rac{1}{3} \kappa \mathcal{S}^3$$

- Light S a bit lighter than light higgsinos (with small mixing) solves higgsino underabundance problem
- Singlino-higgsino compression and mixing tuned with λ, κ
- Light $\tilde{\chi}_3^0$ offers additional signal processes
- More parameters impose greater computing needs for scanning—in the end we want

 $\lambda \langle S \rangle \in [100, 250] \text{ GeV}, \quad \kappa \in [0.001, 0.02], \quad \lambda \approx 2\kappa + \epsilon$

CANDIDATE 3: VLL DOUBLET

SM + scalar DM χ + weak doublet $\Psi^{\mathsf{T}} = (\nu', \ell')$ of vector-like leptons:

$$\mathcal{L} \supset \lambda_I \, \chi(\bar{
u}'
u_{\mathrm{L}I} + \bar{\ell}' \ell_{\mathrm{L}I}) + \mathrm{H.c.}$$

• VLL pair production produces $2\ell/\text{monojet}$ signals

- \blacksquare VLL and DM masses independently tuned, look for $\Delta m \sim 0\text{--}30~{\rm GeV}$
- χ annihilates to ν, ℓ and coannihilates with ν', ℓ'

CANDIDATE 4: TYPE-II SEESAW

- \blacksquare SM + Y = 1 weak triplet $\Delta \rightarrow h, S, S^{\pm}, S^{\pm\pm}$
- Tree-level generation of Majorana neutrino masses
- If $m_S < m_{S^{\pm}} < m_{S^{\pm\pm}}, v_{\Delta} \ll 1$ GeV, and h is SM like, $S \rightarrow \nu \bar{\nu}$
- Charged scalar decays via off-shell W bosons produce $2\ell/\text{monojet signals}$

- Triplet scalar splitting controlled by $\mathcal{L} \supset -\lambda_4 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$
- Scalars known to be weakly constrained for small $\lambda_4 < 0$

$m_{\ell\ell}$ distributions: simplified MSSM

$m_{\ell\ell}$ distributions: NMSSM

• $X \in { \{ \tilde{\chi}_1^{\pm}, \tilde{\chi}_3^0 \}, Y \in { \{ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0 \} }$

■ $\tilde{\chi}^+ \tilde{\chi}^-$ similar to higgsinos but $\tilde{\chi}^0$ processes have higgsino and bino-wino features

$m_{\ell\ell}$ distributions: Non-SUSY

- Much harder leptons from direct $\ell' \to \chi \ell$ decays
- Type-II seesaw somewhat similar to $\tilde{\chi}^+ \tilde{\chi}^-$ since $\ell^+ \ell^-$ come from off-shell W^\pm

MSSM significant points

Point	 ATLAS 2ℓ best fit ★ ATLAS 2ℓ mos 		 CMS monojet best fit 	\star CMS monojet most significant		
$(m_{\tilde{\chi}^0_2}, \Delta m)$ [GeV]	(273, 16.3)	(284, 20.0)	(287, 7.30)	(258, 11.8)		
$(p, \hat{\mu})$ [ATLAS 2ℓ]	(0.047, 1.12)	(0.041, 1.26)	(> 0.5, < 0.1)	(0.290, 0.30)		
$(p, \hat{\mu})$ [ATLAS 3ℓ]	(> 0.5, < 0.1)	(0.426, < 0.1)	(> 0.5, < 0.1)	(> 0.5, < 0.1)		
$(p, \hat{\mu})$ [CMS monojet]	(0.098, 1.58)	(0.065, 2.33)	(0.049, 1.15)	(0.044, 1.40)		
$(p, \hat{\mu})$ [ATLAS monojet]	(0.277, 1.21)	(0.163, 2.44)	(0.127, 1.53)	(0.277, 0.879)		
M_1 [GeV]	248.0	254.6	269.9	238.2		
M_2 [GeV]	241.7	251.3	254.0	228.6		
m_h [GeV]	127.0	126.5	126.8	126.8		
$m_{\tilde{\chi}^0_1}$ [GeV]	256.8	263.7	279.5	246.7		
$m_{\tilde{\chi}^0_2}$ [GeV]	273.1	283.7	286.8	258.4		
$m_{\tilde{\chi}_{1}^{\pm}}$ [GeV]	273.3	283.9	287.0	258.6		
$(N_{11}, N_{12}, N_{13}, N_{14})$	(0.9995, -0.0211,	(0.9996, -0.0175,	(0.9984, -0.0501,	(0.9993, -0.0284,		
	0.0232, -0.0038)	0.0231, -0.0039)	0.02443, -0.0043)	0.0235, -0.0038)		
$(N_{21},N_{22},N_{23},N_{24})$	(0.0220, 0.9990,	(0.0184, 0.9990,	(0.0511, 0.9979,	(0.0293, 0.9988,		
	-0.0392, 0.0066)	-0.0394, 0.0068)	-0.0386, 0.0068)	-0.0390, 0.0063)		

- 2ℓ best fit shows modest overlap with CMS monojet
- Most significant \star in vicinity of correct Ωh^2
- Monojet best fit with $\Delta m < 10$ GeV invisible to 2ℓ analysis

16 of 20

NMSSM SIGNIFICANT POINTS

Point $(m_{\tilde{\chi}_{2}^{0}}, \Delta m)$ [GeV]	★ ATLAS 2ℓ best (197, 17.4)	 ATLAS 2ℓ second best (184, 15.5) 	• CMS monojet best fit (205, 6.66)	★ CMS monojet most significant (179, 16.3)	
$(p, \hat{\mu})$ [ATLAS 2ℓ] $(p, \hat{\mu})$ [ATLAS 3ℓ] $(r, \hat{\mu})$ [ATLAS 3ℓ]	(0.041, 0.97) (0.446, 0.12) (0.122, 2.00)	(0.044, 0.80) (> 0.5, 0.12) (0.120, 2.65)	(0.435, < 0.1) (> 0.5, 0.71) (0.712, 1, 01)	(0.071, 0.64) (> 0.5, 0.13) (0.051, 0.73)	
$(p, \hat{\mu})$ [ATLAS monojet] $(p, \hat{\mu})$ [ATLAS monojet]	(0.132, 3.00) (0.277, 2.44)	(0.277, 2.02)	(0.127, 2.96)	(0.277, 2.08)	
$\mu_{\rm eff} ~[{\rm GeV}]$	189.3	177.0	199.1	172.6	
κ	0.0157	0.0108	0.0025	0.0146	
λ	0.0330	0.0226	0.0050	0.0309	
$\tan \beta$	19.71	25.94	10.70	12.82	
$M_{\tilde{t}}$ [GeV ²]	$8.06 \times 10^{\circ}$	7.20 × 10 ⁵	3.42×10^{5}	9.12 × 10 ²	
$A_t [GeV]$	2.61×10^{3}	-1.28×10^{3}	2.07×10^{3}	-2.64×10^{3}	
A_{λ} [GeV]	-34.60	-92.77	189.4	192.0	
A_{κ} [GeV]	-43.01	-8.771	-161.3	-55.91	
m_h [GeV]	124.0	123.4	123.0	122.6	
$m_{\tilde{\chi}_{1}^{0}}$ [GeV]	179.6	168.5	198.5	162.7	
$m_{\tilde{\chi}_0^0}$ [GeV]	197.0	183.9	205.2	179.0	
$m_{\tilde{\chi}_{1}^{\pm}}^{2}$ [GeV]	198.1	185.5	207.1	180.3	
$m_{\tilde{\chi}^0_2}$ [GeV]	199.9	187.3	209.0	182.1	
3	(0.0042, -0.0070,	(0.0032, -0.0053,	(0.0016, -0.0026,	(0.0041, -0.0069,	
$(N_{11}, N_{12}, N_{13}, N_{14}, N_{15})$	0.1547, -0.1683,	0.1201, -0.1299,	0.0580, -0.0597,	0.1479, -0.1622,	
	0.9735)	0.9841)	0.9965)	0.9756)	
	(-0.0173, 0.0289,	(-0.0172, 0.0287,	(-0.0184, 0.0312,	(-0.0176, 0.0294,	
$(N_{21}, N_{22}, N_{23}, N_{24}, N_{25})$	-0.6932, 0.6827,	-0.7004, 0.6907,	-0.7077, 0.7006,	-0.6951, 0.6838,	
	0.2284)	0.1767)	0.0832)	0.0219)	
	(-0.0134, 0.0226,	(-0.0137, 0.0231,	(-0.0126, 0.0216,	(-0.0131, 0.0220,	
$\text{Im}(N_{31}, N_{32}, N_{33}, N_{34}, N_{35})$	0.7039, 0.7097,	0.7036, 0.7101,	0.7041, 0.7097,	0.7035, 0.7100,	
	0.0110)	0.0080)	0.0016)	0.0116)	

18 of 20

NON-SUSY SIGNIFICANT POINTS

$\begin{array}{l} \text{Point} \\ (m_{\ell'}=m_{\nu'},\Delta m(\ell',\chi)) \ [\text{GeV}] \end{array}$	• CMS monojet best fit (273, 16.3)	★ CMS monojet most significant $(284, 20.0)$
Significance (<i>p</i> -value)	0.047	0.041
Signal strength $\hat{\mu}$	1.12	1.26

- VLL model has no points with 2/3ℓ discovery potential: 2ℓ observed limits stronger than expected
- Monojet points correspond to underabundant DM
- Type-II seesaw unconstrained by all searches:

	$\operatorname{CL}^{\operatorname{exp}}_s$	$\mathrm{CL}^{\mathrm{obs}}_s$	p-value	$\hat{\mu}$
ATLAS 2ℓ	0.387	0.620	0.050	2.06
ATLAS 3ℓ	0.611	0.615	≥ 0.5	0.62
CMS monojet	0.270	0.395	0.081	1.17
ATLAS monojet	0.553	0.399	0.277	0.72

•
$$(m_{S^{\pm}}, \Delta m(S^{\pm}, S)) = (95, 5)$$
 GeV

• Excesses still visible
$$(CL_s^{obs} > CL_s^{exp})$$

Outlook

- \blacksquare We explored excesses in the soft lepton + $E_{\rm T}^{\rm miss}$ channel for four well motivated models
- Excesses might have some overlap with monojets for pure higgsinos [8]; we now find modest compatibility in bino-wino MSSM and singlino-higgsino NMSSM, but poor fits for two non-SUSY models
- With this puzzle unresolved and a workflow worked out, we have choices for future work:
 - Detailed scans of other popular models (go ahead, call them out)
 - \Box Cook up model(s) specifically for these excesses
 - □ Improved statistical treatments (combined likelihood, allowed signal strengths)

Outlook

- \blacksquare We explored excesses in the soft lepton + $E_{\rm T}^{\rm miss}$ channel for four well motivated models
- Excesses might have some overlap with monojets for pure higgsinos [8]; we now find modest compatibility in bino-wino MSSM and singlino-higgsino NMSSM, but poor fits for two non-SUSY models
- With this puzzle unresolved and a workflow worked out, we have choices for future work:
 - Detailed scans of other popular models (go ahead, call them out)
 - $\hfill\square$ Cook up model(s) specifically for these excesses
 - Improved statistical treatments (combined likelihood, allowed signal strengths)

Thank you for your attention

I am happy to answer questions if we have time

BIBLIOGRAPHY (1)

- G. Aad *et al.* (ATLAS), Eur. Phys. J. C **81**, 1118 (2021), arXiv:2106.01676 [hep-ex].
- [2] A. Tumasyan et al. (CMS), CMS-PAS-SUS-21-008 (2023).
- [3] A. Tumasyan *et al.* (CMS), J. High Energy Phys. 04, 147 (2022), arXiv:2106.14246 [hep-ex].
- [4] G. Aad et al. (ATLAS), Phys. Rev. D 101, 052005 (2020), arXiv:1911.12606 [hep-ex].
- [5] A. Tumasyan *et al.* (CMS), J. High Energy Phys. 04, 091 (2022), arXiv:2111.06296 [hep-ex].
- [6] G. Aad *et al.* (ATLAS), Phys. Rev. D 103, 112006 (2021), arXiv:2102.10874 [hep-ex].
- [7] A. Tumasyan *et al.* (CMS), J. High Energy Phys. **11**, 153 (2021), arXiv:2107.13021 [hep-ex].

BIBLIOGRAPHY (2)

- [8] D. Agin, B. Fuks, M. D. Goodsell, and T. Murphy, Phys. Lett. B 853, 138597 (2024), arXiv:2311.17149 [hep-ph].
- [9] C. Rogan, (2020).
- [10] G. Aad *et al.* (ATLAS), Eur. Phys. J. C 80, 47 (2020), arXiv:1909.00761 [hep-ex].
- [11] G. Aad et al. (ATLAS), JINST 15, P09015 (2020), arXiv:2004.13447 [physics.ins-det].
- [12] J. Fiaschi, B. Fuks, M. Klasen, and A. Neuwirth, Eur. Phys. J. C 83, 707 (2023), arXiv:2304.11915 [hep-ph].
- [13] J. Y. Araz, "Spey: smooth inference for reinterpretation studies," (2023), arXiv:2307.06996 [hep-ph].

Bonus material

ATLAS-SUSY-2018-16 YIELDS

			SR $m_{\ell\ell}$ bin [GeV]						
		[1,2]	[2,3]	[3.2,5]	[5,10]	[10, 20]	[20, 30]	[30, 40]	[40, 60]
SR–E high ee	Observed			1	16	13	8	8	18
	Fitted SM events			0.7 ± 0.4	10.3 ± 2.5	12.1 ± 2.2	10.1 ± 1.7	10.4 ± 1.7	19.3 ± 2.5
SR-E high $\mu\mu$	Observed	5	5	0	9	23	3	5	20
	Fitted SM events	3.4 ± 1.2	3.5 ± 1.3	3.9 ± 1.3	11.0 ± 2.0	17.8 ± 2.7	8.3 ± 1.4	10.1 ± 1.5	19.6 ± 2.3
SR–E med ee	Observed			0	4	11	4		
	Fitted SM events			0.11 ± 0.08	5.1 ± 1.6	7.3 ± 1.9	2.2 ± 0.9		
SR-E med $\mu\mu$	Observed	16	8	6	41	59	21		
	Fitted SM events	14.6 ± 2.9	6.9 ± 2.1	6.2 ± 1.9	34 ± 4	52 ± 6	18.5 ± 3.2		
SR–E low ee	Observed			7	11	16	16	10	9
	Fitted SM events			5.3 ± 1.5	8.6 ± 1.8	16.7 ± 2.5	15.5 ± 2.6	12.9 ± 2.1	18.8 ± 2.2
SR-E low $\mu\mu$	Observed	9	7	7	12	17	18	16	44
	Fitted SM events	15.4 ± 2.4	8.0 ± 1.7	6.5 ± 1.6	11.3 ± 1.9	15.6 ± 2.3	16.7 ± 2.3	15.3 ± 2.0	35.9 ± 3.3

NEUTRALINO DECAYS TO LEPTONS

• Full differential decay rate, $\tilde{\chi}^0_2 \rightarrow Z^* + \tilde{\chi}^0_1$:

$$\begin{split} \frac{\mathrm{d}\Gamma}{\mathrm{d}m_{\ell\ell}} = Cm_{\ell\ell} \, \frac{\{m_{\ell\ell}^4 - m_{\ell\ell}^2 [(\Delta m)^2 + M^2] + (M\Delta m)^2\}^{1/2}}{(m_{\ell\ell}^2 - M_Z^2)^2} \\ \times \left\{-2m_{\ell\ell}^4 + m_{\ell\ell}^2 [2M^2 - (\Delta m)^2] + (M\Delta m)^2\right\} \end{split}$$

$$M,\Delta m=m_{\tilde{\chi}^0_2}\pm m_{\tilde{\chi}^0_1}$$
: $2M^2-(\Delta m)^2$ sensitive to signed $\tilde{\chi}^0$ masses

• "Flat" decay rate used by PYTHIA 8:

$$\frac{\mathrm{d}\Gamma^{\mathrm{flat}}}{\mathrm{d}m_{\ell\ell}} = C^{\mathrm{flat}} \, m_{\ell\ell} \, \{m_{\ell\ell}^4 - m_{\ell\ell}^2 [(\Delta m)^2 + M^2] + (M\Delta m)^2 \}^{1/2}$$

FLAT VS. ACCURATE $m_{\ell\ell}$

