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Motivation

ä At the LHC, ongoing searches for Beyond the Standard Models physics;

ä SUSY can be realized in several distinct ways with different properties;
ä The Minimal R-symmetric Supersymmetric Standard Model (MRSSM) postulates a global

U(1) R-symmetry [Fayet (1975)][Salam, Strathdee (1975)] under which SM states are uncharged, while
SUSY particles such as squarks and gluinos are charged;

ä The MRSSM, in contrast with the MSSM, has a higher degree of symmetry and, as a result,
predicts more particles but has fewer free parameters.
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State of the Art

The MRSSM has already been investigated in a few aspects:

ä EW and Higgs sectors new interactions:
that push the Higgs boson mass up to the observed value for smaller values of top-squark masses
than in the MSSM [Bertuzzo, Frugiuele, Gregoire, Ponton (2015)][Dießner, Kalinowski, Kotlarski, Stöckinger (2014)][Diessner,
Kalinowski, Kotlarski, Stöckinger (2015)][Diessner, Kalinowski, Kotlarski, Stöckinger (2016)] [Kalinowski, Kotlarski (2024)];
that can contribute to the W-boson mass [Dießner, Kalinowski, Kotlarski, Stöckinger (2014)][Diessner, Kalinowski, Kotlarski,
Stöckinger (2016)][Athron, Bach, Jacob, Kotlarski, Stöckinger, Voigt (2022)];

ä possible dark matter candidate [Belanger, Benakli, Goodsell, Moura, Pukhov (2009)][Chun, Park, Scopel (2010)][Buckley, Hooper,

Kumar (2013)] in particular with light single Higgs [Diessner, Kalinowski, Kotlarski, Stöckinger (2016)][Kalinowski,

Kotlarski (2024)];
ä colour-octet scalar [Choi, Drees, Kalinowski, Kim, Popenda, Zerwas (2009)][Plehn, Tait (2009)][Goncalves-Netto, Lopez-Val, Mawatari,

Plehn, Wigmore (2012)][Kotlarski (2017)][Darmé, Fuks, Goodsell (2018)] and Dirac gauginos [Choi, Kalinowski, Kim,

Popenda (2009)][Choi, Choudhury, Freitas, Kalinowski, Kim, Zerwas (2010)][Chalons, Goodsell, Kraml, Reyes-González, Williamson (2019)];
ä flavour physics properties in the lepton and top sectors [Dudas, Goodsell, Heurtier, Tziveloglou (2014)][Fok,

Kribs (2010)][Herquet, Knegjens, Laenen (2010)] including (g−2)µ [Kotlarski, Stöckinger, Stöckinger-Kim (2019)].
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Minimal R-symmetric Supersymmetric Standard Model

SM Particles MRSSM Particles

u c t

d s b

νe νµ ντ

e µ τ

g

γ

Z

W

H

ũ c̃ t̃

d̃ s̃ b̃

ν̃e ν̃µ ν̃τ

ẽ µ̃ τ̃

g̃

γ̃

Z̃

W̃

O

H̃

ä q̃L part of chiral supermultiplets with R = +1;
ä q̃R part of antichiral supermultiplets with R = −1;
ä g̃L are Dirac fermions with R = +1;
ä g̃L and ¯̃gR behave like their MSSM counterparts;
ä spin-0 colour octets O: scalar gluons.

[Kribs, Poppitz, Weiner (2008)]
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LO Squark-(anti)squark production in the MRSSM

q

q

q̃L/q̃R

q̃∗
L/q̃∗

R

(a) quark channel squark-antisquark;

g

g

q̃L/q̃R

q̃∗
L/q̃∗

R

(b) gluon channel squark-antisquark;

q

q

q̃L/q̃R

q̃R/q̃L

(c) quark channel squark-squark.

Fausto Frisenna MRSSM Squark production June 10, 2024 6 / 21



LO production cross-section
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The larger difference is in the intermediate
mg̃ -region in reach of the LHC.

Interesting limiting scenarios are:
ä mg̃ → 0: Dirac vs Majorana nature

become negligible;
ä mg̃ → ∞: t-channel diagrams become

negligible;

ä in the g̃-decoupling limit, σ(0)
q̃q̃ → 0 but:

MRSSM: σ(0)
q̃q̃ ∝ m−4

g̃ ;
MSSM: σ(0)

q̃q̃ ∝ m−2
g̃ ;
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Perturbative calculations of the cross-section

ä Perturbative expansion of the cross-section:

σ =
∑

n
αn

S cn = c0 + αS c1 + α2
S c2 + . . . with cn = an +

2n∑
k=0

bnkLk ; and Lk = lnk (
β2

)
;

β :=

√
1−

4m2
q̃

ŝ
.

ä Heavy particle produced close to the threshold limit
√

ŝ → 2mq̃, so β → 0;
ä only soft gluon emission allowed;
ä large logs L can spoil the perturbative series;
ä systematic treatment: resummation of the soft gluons.

Aim: improve the NLO calculation [Diessner, Kotlarski, Liebschner, Stöckinger (2017)] by adding resummation
corrections.
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ŝ
.

ä Heavy particle produced close to the threshold limit
√
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Soft gluon resummation

ä Resummation is carried out in Mellin space where the cross-section factories:
˜̂σ
(res)
ij→jk =

∑
H̃ij→jk,I × ∆̃i∆̃j × S̃ij→jk,I ;

where the Mellin transform is:
f̃ (N) :=

∫ 1

0
dx xN−1 f (x);

ä the sum is over color decomposed amplitude;
ä ∆̃i∆̃j : resums logs from soft-collinear radiation;

ä S̃ij→jk,I : resums logs from soft radiation;

ä H̃ij→jk,I : non log hard contributions;

∆̃i∆̃j S̃ij→jk,I = exp
[
Lg1(αSL) + g2,I(αSL) + αSg3,I(αsL) + . . .

]
;

LL NLL NNLL
Identical color structure as the MSSM: known exponential functions used as for the MSSM.
The LO partonic cross-section approaches the threshold:

ä p-wave (∝ β3): quark channel in both processes, resummation up to NLL;
ä s-wave (∝ β): gluon channel, resummation up to NNLL.
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[Kodaira, Trentadue (1982)][Sterman (1987)][Catani, D’Emilio, Trentadue (1988)][Catani, Trentadue (1989)][Kidonakis, Sterman (1996)][Contopanagos,

Laenen, Sterman (1997)][Kidonakis, Oderda, Sterman (1998)][Catani, De Florian, Grazzini (2001)][Moch, Vermaseren, Vogt (2004)][Beneke, Falgari,

Schwinn (2010)][Czakon, Mitov, Sterman (2009)][Ferroglia, Neubert, Pecjak, Yang (2009)]...
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]
;

LL NLL NNLL
Identical color structure as the MSSM: known exponential functions used as for the MSSM [Kulesza,

Motyka (2009)][Kulesza, Motyka (2009)][Beenakker, Brensing, Kramer, Kulesza, Laenen, Niessen (2010)][Beenakker, Brensing, Kramer, Kulesza, Laenen,

Niessen (2010)][Beenakker, Brensing, Kramer, Kulesza, Laenen, Niessen (2012)][Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes,

Van Daal (2013)][Beenakker, Borschensky, Krämer, Kulesza, Laenen, Theeuwes, Thewes (2014)][Beenakker, Borschensky, Heger, Krämer, Kulesza,

Laenen (2016)][Beenakker, Borschensky, Krämer, Kulesza, Laenen (2016)].

The LO partonic cross-section approaches the threshold:
ä p-wave (∝ β3): quark channel in both processes, resummation up to NLL;
ä s-wave (∝ β): gluon channel, resummation up to NNLL.

Fausto Frisenna MRSSM Squark production June 10, 2024 9 / 21



Soft gluon resummation

ä Resummation is carried out in Mellin space where the cross-section factories:
˜̂σ
(res)
ij→jk =

∑
H̃ij→jk,I × ∆̃i∆̃j × S̃ij→jk,I ;

ä the sum is over color decomposed amplitude;
ä ∆̃i∆̃j : resums logs from soft-collinear radiation;

ä S̃ij→jk,I : resums logs from soft radiation;

ä H̃ij→jk,I : non log hard contributions;

∆̃i∆̃j S̃ij→jk,I = exp
[
Lg1(αSL) + g2,I(αSL) + αSg3,I(αsL) + . . .

]
;
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Calculations of the matching coefficient

In the absolute mass threshold up to NNLL, the hard functions factorize:

H̃ij→jk,I = ˜̂σ
(0)

ij→q̃q̃(∗),I

(
N, {m2}, µ2

) (
1 +

αS
π

C(1)
ij→q̃q̃(∗),I

(N, {m2}, µ2)
)

the one-loop matching coefficients, C(1), must be calculated anew for MRSSM.

ä C(1) collects all O
(
α3

s
)

non-logarithmic (in N) contributions that do not vanish at the
threshold;

ä obtained either by expanding the full NLO in β or calculating the real and virtual corrections
in the threshold limit and summing them up [Beenakker, Brensing, Kramer, Kulesza, Laenen, Niessen (2012)]:

σ̂
(1,th)
I = σ̂

(V,th)
I + σ̂

(R,th)
I .

In the latter approach, calculations “simplify” by using the fact that we need the expression at the
threshold, and we can obtain an exact analytical result;

ä the real contributions: derived for any 2 → 2 process with massive coloured particles in the
final state [Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes, Van Daal (2013)];

ä the virtual contributions: needed to be calculated;
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ä we built a subroutine to color-decompose the amplitude squared at the loop level inside the
FeynArts/FormCalc [Hahn, Perez-Victoria (1999)][Hahn (2001)];

ä MRSSM model file generated by SARAH [Staub (2010)][Staub (2011)][Staub (2013)][Staub (2014)];
ä the one-loop counterterms were included by hand [Diessner, Kotlarski, Liebschner, Stöckinger (2017)];
ä the amplitude written in terms of masses, Mandelstam variables, and scalar integrals;
ä the Passarino-Veltman integrals replaced by their analytical expansions;
ä integrated over the phase space;
ä combined real and virtual threshold corrections: poles cancellation;
ä divided the Mellin-transformed result by the Mellin-LO at the threshold;
ä considering only the terms that do not contain powers of ln N.

The one-loop matching coefficients can schematically represent by:

αs

π
C(1)

gg→q̃q̃∗,I =
˜̂σ
(1,th)
gg→q̃q̃∗,I

˜̂σ
(0,th)
gg→q̃q̃∗,I

∣∣∣∣∣∣
ln N−independent
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Full resummed cross-section

The NNLL resumed cross-section reads as:

˜̂σ
(res)
ij→q̃q̃(∗)

(
N, {m2}, µ2

)
=

∑
I

˜̂σ
(0)

ij→q̃q̃(∗),I

(
N, {m2}, µ2

) (
1 +

αS
π

C(1)
ij→q̃q̃(∗),I

(N, {m2}, µ2)
)

× exp
[
Lg1(αSL) + g2,I(αSL) + αSg3,I(αsL)

]
.

The NLO and NNLL results are added up through a matching procedure that avoids double counting
of the NLO terms [Catani, Mangano, Nason, Trentadue (1996)]:

σ
(NLO+(N)NLL)

h1h2→q̃q̃(∗)
(
ρ, {m2}, µ2

)
=

∑
i,j

∫
CT

dN
2πı

ρ−N f̃i/h1 (N + 1, µ2) f̃j/h2 (N + 1, µ2)

×
[
˜̂σ
(res)
ij→q̃q̃(∗)

(
N, {m2}, µ2

)
− ˜̂σ

(res)
ij→q̃q̃(∗)

(
N, {m2}, µ2

)∣∣∣
(NLO)

]
+ σ

(NLO)

h1h2→q̃q̃(∗)
(
ρ, {m2}, µ2

)
.
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K-factors for q̃q̃

KNLL ≡
σ(NLO+NLL)

σ(NLO)
with mO = 100 TeV.

0.5 1.0 1.5 2.0 2.5 3.0
mq̃ [TeV]

0.5

1.0

1.5

2.0

2.5

3.0

m
g̃

[T
eV

]

1.00

1.02

1.04

1.06

1q̃q̃ MRSSM
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ä soft-gluon corrections larger as mq̃ increases;
ä corrections of the same size in the two models;
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K-factors for q̃q̃∗

KNNLL ≡
σ(NLO+NNLL)

σ(NLO)
with mO = 100 TeV.
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ä soft-gluon corrections larger as mq̃ increases;
ä the mg̃ -dependece is different;

ä corrections of the same order, up to 14% in the MRSSM.
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Ratio σMRSSM/σMSSM

Ratios of MRSSM cross-sections over the MSSM ones at the same accuracy with mO = 100 TeV;
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1
ä q̃q̃∗ at NLO+NNLL (left side);
ä q̃q̃ at NLO+NLL (right side).

σMRSSM is drastically reduced compared to σMSSM.

Fausto Frisenna MRSSM Squark production June 10, 2024 15 / 21



Uncertainties
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ä By including resummation corrections, the scale uncertainty is reduced;
ä PDF errors dominated by quark channel, due to valence quarks luminosity.
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cross-section at NLO+(N)NLL
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ä Total cross-section for squarks
production at NLO+(N)NLL;

ä results at
√

S = 13.6 TeV for mq̃ = mg̃
and mO = 100 TeV with PDF4LHC21
PDFs;

ä error for scale and PDF+αS
uncertainties;

ä one-sided error bars for the change of
mO = 2 TeV.
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Summary
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ä Precision predictions for squarks
production at the LHC in the MRSSM:

NLO+NNLL accuracy for q̃q̃∗;
NLO+NLL accuracy for q̃q̃;

ä MRSSM cross sections lower by up to
two orders of magnitude in parameter
regions of interest:

leads to a less stringent limit for mq̃ ;
suppression depends strongly on the
overall mass scale as well as on the
mass splitting between q̃ and g̃;

ä adding soft gluon correction beyond
NLO increases the cross section and
reduces the theoretical error.
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Summary

0.5 1.0 1.5 2.0 2.5 3.0

m = mq̃ = mg̃ [TeV]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

σ
[p

b
]

σNNLL−fast (pb)

LHC,
√
S = 13.6 TeV

PDF4LHC21 Hessian

q̃q̃
q̃q̃∗

MSSM
MRSSM

MRSSM (and MSSM) results are included
in the NNLL-Fast code [Beenakker, Borschensky,

Krämer, Kulesza, Laenen (2016)][Beenakker, Borschensky, Krämer,

Kulesza, Laenen, Mamužić, Moreno Valero (2024)]
www.uni-muenster.de/Physik.TP/~akule_01/nnllfast

ä
√

S = 13, 13.6 TeV with PDF4LHC21
PDFs.
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THANK YOU! 🙃
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