SUSY 2024

Catastrophic Decay of Kaluza-Klein Vacuum Mediated by Singular Instanton

Based on the study with Yutaka Ookouchi and Ryota Sato (arXiv: 2404.13917[hep-th]).

Sohei Tsukahara

Dept. of Physics, Kyushu Univ. Email : tsukahara.sohei.256@s.kyushu-u.ac.jp

Vacuum decay and string theory

• Absence of guiding principle for compactification implies a huge number of (meta)stable states.

Current state of "Bubble of Nothing"

 Bubble of nothing (BoN) is attracting more and more attention because it would be the best candidate for a universal decay channel of non-supersymmetric string vacua.

[I. Garcia Etxebarria, M. Montero, K. Sousa and I. Valenzuela, JHEP 12 (2020) 032 [arXiv: 2005.06494[hep-th]]]
[G. Dibietto, N. Petri, and M. Schillo, JHEP 08 (2020) 040 [arXiv: 2002.01764[hep-th]]]

• While in conventional discussion, BoN is forbidden even for SUSY broken vacua if fermions with SUSY preserving boundary conditions exist, some counterexamples have been proposed in recent years.

[J.J. Blanco-Pillado, B. Shlaer, K. Sousa and J. Urrestilla, JCAP 10 (2016) 002 [arXiv: 1606.03095[hep-th]]] [P. Draper, B. Lillard and C. Skye, JHEP 10 (2023) 049 [arXiv: 2305.17838[hep-th]]]

"Bubble of nothing" is more universal than you think.

- We considered a decay of Kaluza-Klein vacuum mediated by a singular instanton.
- We have evaluated the on-shell contribution of the singularity and find that it reduces a total bounce action.

Take-home message

Decay via singular instanton may be more dominant channel in the context of BoN.

2. Review of bubble of nothing

3. Decay via singular instanton

4. Thermodynamical interpretation

5. Summary and future work

Bubble of Nothing

- "Bubble of Nothing" (often abbreviated as BoN) is a catastrophic decay phenomenon particular to compactified spacetime.
- Kaluza-Klein vacuum $(M_4 \times S^1)$ can decay as the BoN expands at the speed of light.

Bubble of Nothing

• BoN instantons take the form of Euclidean black hole solutions.

$$ds_E^2 = \left(1 - \left(\frac{\sqrt{\alpha}}{r}\right)^2\right) d\phi^2 + \left(1 - \left(\frac{\sqrt{\alpha}}{r}\right)^2\right)^{-1} dr^2 + r^2 ds_{S^3}^2$$

• Euclidean black hole solutions have **conical singularity** at the position of event horizon.

Fix the periodicity of the imaginary time to appropriate value.

$$lpha=R_{KK}^2$$
 (Smoothness condition)

• if the contribution to the on-shell action from the singularity is finite, the condition may be relaxed.

2. Review of bubble of nothing

3. Decay via singular instanton

4. Thermodynamical interpretation

5. Summary and future work

Singular instanton and conical deficit regularization

• The study of singular instantons was initiated by Hawking and Turok and then explored mainly in the context of open universe.

> [S.W. Hawking and N. Turok, Phys. Lett. B 425 (1998) 25 [hep-th/9802030]] [N. Turok and S.W. Hawking, Phys. Lett. B 432 (1998) 271 [hep-th/9803156]]

Gregory, Moss and Withers have recently refined the dS inside geometrical technology for more precise treatment
of singularities. [D. V. Fursaev, A. N. Solodukhin, Phys.Rev.D 52 (1995) 2133-2143 [arXiv:9501127[hep-th]]]

dS instanton + singularity

Bounce action

Split the manifold into two and calculate the Euclidean action for each.

$$I_{\mathcal{M}-\mathcal{B}} = -\frac{1}{8\pi G_n} \int d^{n-1}y \sqrt{h} \left(K - K_0\right) \Big|_{r_{\varepsilon}, r_{\infty}} = \frac{3\pi\alpha}{8G_4}$$
$$I_{\mathcal{B}} = -\frac{2\pi^2 \alpha^{3/2}}{4G_4} = -\frac{\pi \alpha^{3/2}}{4G_4}$$

 $4G_4R$

$$B = I_{\mathcal{M}-\mathcal{B}} + I_{\mathcal{B}} = \frac{\pi R^2}{8G_4} \left(\frac{3\alpha}{R^2} - \frac{2\alpha^{3/2}}{R^3} \right)$$
 (Bounce action)

 $4G_5$

Bounce action

- ✓ Conical singularities in Euclidean solutions play an important role as a catalyst which reduce bounce actions.
- ✓ Our semiclassical analysis is unreliable in the shaded region.

Perhaps we should pay more attention to "singular" BoN.

2. Review of bubble of nothing

3. Decay via singular instanton

4. Thermodynamical interpretation

5. Summary and future work

Thermodynamical interpretation

We can reproduce the bounce action with thermodynamic functions.

ADM energy
$$E = -\frac{1}{8\pi G_5} \oint_{S_{\phi r}} (k - k_0) \sqrt{\sigma} d^3 \theta = \frac{3\pi \alpha}{8G_5}$$

Entropy
$$S = \frac{2\pi^2 \alpha^{3/2}}{4G_5}$$
$$B = \frac{W}{T} = \frac{E - TS}{T} = \frac{3\pi \alpha}{8G_4} - \frac{\pi \alpha^{3/2}}{4RG_4}$$

Thermodynamical interpretation

Let us consider shifting α slightly from R^2 up to the second order.

Negative contribution

- 2. Review of bubble of nothing
- 3. Decay via singular instanton
- 4. Thermodynamical interpretation
- 5. Summary and future work

Summary and future work

- Bubble of nothing is a catastrophic decay phenomenon which "nothing" overwhelms the spacetime.
- Singular instanton may play an important role in decays of higherdimensional spacetime.
 - Conical singularity works as reducing the value of bounce action.
 - Our calculation is consistent with Witten's original argument.
 - We can reproduce the bounce action with thermodynamic functions and give an interpretation.
- ✓ Validity of the regularization method.
- ✓ Uniform flux?
- ✓ Embedding into stringy model?

Summary and future work

- Bubble of nothing is a catastrophic decay phenomenon which "nothing" overwhelms the spacetime.
- Singular instanton may play an important role in decays of higherdimensional spacetime.
 - Conical singularity works as reducing the value of bounce action.
 - Our calculation is consistent with Witten's original argument.
 - We can reproduce the bounce action with thermodynamic functions and give an interpretation.
- ✓ Validity of the regularization method.
- ✓ Uniform flux?
- ✓ Embedding into stringy model?

[I. G. Etxebarria, M. Montero, K. Sousa and I. Valenzuela, JHEP 12, (2020) 032]

Conical deficit

Introducing $\rho \equiv r\sqrt{f(r)}$, we can rewrite the instanton solution as $ds^2 = F(\rho)^2 d\chi^2 + d\rho^2 + r(\rho)^2 d\Omega_3^2$, $F(\rho)^2 \equiv \left(1 - \left(\frac{\sqrt{\alpha}}{r(\rho)}\right)^2\right) R^2$ $2\pi \text{ periodic}$ $ds^2 \simeq d\rho^2 + \rho^2 d(F'(0)\chi)^2 + r(0)^2 d\Omega_3^2$ (near the singularity)

Since $F'(0) \neq 1$ in general, there would be a deficit angle defined as

$$2\pi\delta = 2\pi\left(1 - F'(0)\right) = 2\pi\left(1 - \frac{R}{\sqrt{\alpha}}\right)$$

Conical deficit regularization (detail)

