Searches for new phenomena in hadronic final states using the ATLAS detector

SUSY2024

Carlos Moreno Martínez

Madrid - 13/June/2024

FACULTÉ DES SCIENCES

Searching for hadronic resonances

- Hadronic final states are both interesting and challenging
 - Lots of promising models with <u>different topologies</u>!
- Multiple searches for resonant dijet production \bullet
 - Phase space for Z' mediator largely constrained
 - Improved analyses to increase sensitivity

C. Moreno Martínez

• The search for Beyond the Standard Model (BSM) phenomena is a big part of the ATLAS physics program

SUSY2024 - 13/June/2024

Boosted dijet + ISR Phys. Lett. B 788 (2019) 316 Boosted di-b-iet + ISF ATLAS-CONF-2018-052 Resolved dijet + ISF Phys. Lett. B 795 (2019) 56 Resolved di-b-iet + ISF Phys. Lett. B 795 (2019) 56 Phys. Rev. Lett. 121 (2018) 081801 Phys. Rev. D 98 (2018) 032016 JHEP 03 (2020) 145 JHEP 03 (2020) 145 Dijet angular Phys. Rev. D 96 (2017) 05200 t resonance (1L Eur. Phys. J. C 78 (2018) 565 tt resonance (0L JHEP 10 (2020) 6 Dijet + lepton JHEP 06 (2020) 15

Dijet + ISR photon/jet

- - Two channels: γ -ISR and jet-ISR \rightarrow each split into flavour-inclusive and b-tagged signal regions (SR).
 - Target scenarios where both decay jets can be reconstructed separately

Photon channel

- ► High- p_T photon at the trigger level, offline $p_T^{\gamma} > 150$ GeV
- At least 2 reconstructed jets with $p_T^j > 20 \text{ GeV}$

Trijet channel

- High- p_T jet at the trigger level, offline $p_T^{jet} > 475$ GeV
- At least 3 reconstructed jets, combined based on minimum $|\Delta \phi|$

C. Moreno Martínez

<u>Trigger on high-energy Initial State Radiation (ISR)</u> to increase sensitivity to low-mass resonances

Dijet + ISR photon/jet (II)

- Dominant background: non-resonant QCD processes •
 - Functional fit to data for background estimate
 - Look for signal bump in mass spectrum
- No significant excess \rightarrow 95%CL exclusion limits
 - Model-independent limits based on Gaussian templates
 - Interpretation for spin-1 Z' mediator

• Leading sensitivity in this mass range!

C. Moreno Martínez

C. Moreno Martínez

Submitted to PRD - arXiv:2403.08547

Resonant dark jets

- Other topologies can be explored to test dark matter models with mediator Z'
 - Z' can decay to fermions from the dark sector: $Z' \rightarrow f_d \bar{f}_d$
 - Large search program for different f_d properties

JHEP 02 (2024) 128

Resonant dark jets

- Other topologies can be explored to test dark matter models with mediator Z'
 - Z' can decay to fermions from the dark sector: $Z' \rightarrow f_d \overline{f}_d$
 - Large search program for different f_d properties
- Search for $Z' \rightarrow q_d \bar{q}_d$ with prompt q_d decays in dijet final states
 - Hadronisation in dark sector before decaying into SM
 - Wider decay activity and large number of tracks
 - Final state: 2 large-R 1.0 jets with high number of tracks
- Define CR, VR and SR according to jet track multiplicity
 - Extract background shape from CR, fit normalisation in SR

C. Moreno Martínez

Resonant dark jets (II)

C. Moreno Martínez

More complex topologies

- Good coverage of the phase space in dijet topologies
- There is good motivation for more complex topologies with intermediate bosons
 - Models with a nearly degenerate Heavy Vector Triplet (HVT) \rightarrow resonant diboson production

C. Moreno Martínez

More complex topologies

- Good coverage of the phase space in dijet topologies
- There is good motivation for more complex topologies with intermediate bosons
 - Models with a nearly degenerate Heavy Vector Triplet (HVT) \rightarrow resonant diboson production
 - More exotic theories with A, B = X BSM particle

Lots of channels to explore!

Talks by A. Kvam, A. Lory and M. Barros

C. Moreno Martínez

More complex topologies

- Good coverage of the phase space in dijet topologies lacksquare
- There is good motivation for more complex topologies with intermediate bosons
 - Models with a nearly degenerate Heavy Vector Triplet (HVT) \rightarrow resonant diboson production
 - More exotic theories with A, B = X BSM particle

Lots of channels to explore!

Talks by A. Kvam, A. Lory and M. Barros

C. Moreno Martínez

Reconstruct resonance through final decay products

Plenty different final states, focus on jets

$Y \rightarrow HX$ anomaly search

- New search for $Y \rightarrow HX$ in hadronic final states
 - Consider generic spin-1 $X \rightarrow q\bar{q}$ to maximize sensitivity independent from model!
- Capture hadronic H, X decays with large-R jets lacksquare

High- p_T large-R jet at trigger level, at least 2 offline large-R jets Anomaly tagger for the X decay - separation from QCD jets without assumptions on X!Exploit $H \rightarrow b\bar{b}$ branching ratio with a H_{bb} tagger

- Define three channels based on the reconstructed X properties
 - <u>Anomalous X</u>: anomaly score > 0.5

- Merged decay: 2-prong large-R jet
 - <u>Resolved decay</u>: 2 small-R jets

C. Moreno Martínez

Phys. Rev. D 108 (2023) 052009

C. Moreno Martínez

• ATLAS counts many independent analyses with sensitivity to these signal scenarios

f	Analysis	Leptons	$E_{\rm T}^{\rm miss}$	Jets	<i>b</i> -tags	Top-tags	VBF	Discr.
	$WW/WZ \rightarrow qqqq$	0	Veto	$\geq 2J$	-	_	_	m_{VV}
f'	$WW/WZ \to \ell \nu q q$	$1e,1\mu$	Yes	$\geq 2j, \geq 1J$	0,1,2	-	Yes	m_{VV}
$q \bigvee Y \overset{A}{\rightarrow} Y$	$WZ \to qq \nu \nu$	0	Yes	$\geq 1 J$	0	-	Yes	m_{VV}
	$WZ \to qq\ell\ell$	$2e,2\mu$	-	$\geq 2j, \geq 1J$	0	-	Yes	m_{VV}
	$WZ \to \ell \nu \ell \ell$	$3 \subset (e, \mu)$	Yes	-	0	-	Yes	m_{VV}
$q / \qquad D \qquad f''$	$WH/ZH \rightarrow qqbb$	0	Veto	$\geq 2J$	1, 2	-	_	m_{VH}
	$ZH \to \nu\nu bb$	0	Yes	$\geq 2j, \geq 1J$	1,2	-	-	m_{VH}
f'''	$WH \to \ell \nu bb$	$1e,1\mu$	Yes	$\geq 2j, \geq 1J$	1,2	-	-	m_{VH}
	$ZH \to \ell\ell bb$	$2e,2\mu$	Veto	$\geq 2j, \geq 1J$	1,2			m_{VH}
$q \qquad f \qquad $	$\ell \nu$	$1e, 1\mu$	Yes				-	m_{T}
	au u	1 au	Yes	-	-	-	-	$m_{ m T}$
	$\ell\ell$	$\geq 2e, \geq 2\mu$	-	-	-	-	-	$m_{\ell\ell}$
	au au	$0,1e,1\mu$	Yes	-	$0, \geq 1$	-	_	$m_{ au au}$
	tt0L	0	-	2J	1, 2	2	_	m_{tt}
	m tb0L	0	-	\geq (1j+1J)	≥ 1	1	-	m_{tb}
	tb1L	$1e,1\mu$	Yes	2j, 3j	1,2	-	-	m_{tb}
	\overline{qq}	0	-	2j	0	_	_	m_{jj}
	bb	0	-	2j	1,2	-	-	m_{bb}

C. Moreno Martínez

<u>JHEP 04 (2024) 118</u>

- ATLAS counts many independent analyses with sensitivity to these signal scenarios
- Statistical combination of a number of results covering these topologies
 - Individual analyses are studied for orthogonality with slight adjustments
- Interpret results in terms of exclusion for 3 parameter choices in the HVT framework
 - 1D exclusion on production cross section

C. Moreno Martínez

- ATLAS counts many independent analyses with sensitivity to these signal scenarios
- Statistical combination of a number of results covering these topologies
 - Individual analyses are studied for orthogonality with slight adjustments
- Interpret results in terms of exclusion for 3 parameter choices in the HVT framework
 - 1D exclusion on production cross section
 - 2D exclusion on different possible couplings

Explored sensitivity to third generation fermions!

ℓu	$1e,1\mu$	Yes	-	-	-	-	$m_{ m T}$
$\rightarrow \tau \nu$	1 au	Yes	-	-	-	-	$m_{ m T}$
$\ell\ell$	$\geq 2e, \geq 2\mu$	-	-	-	-	-	$m_{\ell\ell}$
$\rightarrow \tau \tau$	$0,1e,1\mu$	Yes	_	$0, \geq 1$	-	-	$m_{ au au}$
tt0L	0	-	2J	1,2	2	-	m_{tt}
\longrightarrow tb0L	0	-	\geq (1j+1J)	≥ 1	1	-	m_{tb}
\longrightarrow tb1L	$1e,1\mu$	Yes	2j, 3j	1,2	-	-	m_{tb}
\overline{qq}	0	-	2j	0	-	_	$\overline{m_{jj}}$
$\longrightarrow bb$	0	-	2j	1,2	-	-	m_{bb}

JHEP 04 (2024) 118

• ATLAS counts many independent analyses with sensitivity to these signal scenarios

• Improved sensitivity to third generation fermions!

C. Moreno Martínez

- Mixed topology with heavy resonance decaying to V + f is also possible \rightarrow VLQ
- Search for pair production of VLQs decaying to W and a light quark more in D. Paredes' talk!
 - Final state with one $W \rightarrow l\nu$ and one $W \rightarrow qq'$
 - Select events with one high energy lepton, large E_T^{miss} , and jets

, eeeeeeeree

Submitted to PRD - arXiv:2405.19862

- Mixed topology with heavy resonance decaying to V + f is also possible \rightarrow VLQ
- Search for pair production of VLQs decaying to W and a light quark
 - Final state with one $W \rightarrow l\nu$ and one $W \rightarrow qq'$
 - Select events with one high energy lepton, large E_T^{miss} , and jets
- Main backgrounds: W+jets, top quark production
 - Estimated from MC, corrected in dedicated CRs with an iterative reweighting
- Fit to reconstructed mass of leptonic VLQ
 - No significant excess found

- Mixed topology with heavy resonance decaying to V + f is also possible lacksquare
- Search for pair production of VLQs decaying to W and a light quark
 - Final state with one $W \rightarrow l\nu$ and one $W \rightarrow qq'$
 - Select events with one high energy lepton, large E_T^{miss} , and jets
- Main backgrounds: W+jets, top quark production
 - Estimated from MC, corrected in dedicated CRs with an iterative reweighting
- Fit to reconstructed mass of leptonic VLQ
 - No significant excess found
 - Exclusion limits for different VLQ branching fractions

C. Moreno Martínez

$VLQ \rightarrow Wq$ search

10

	·
	•
	_

1600
1500
1400
1300
1200
1100
1000
900

้ก
(T)
Σ
Ξ
3
Ξ.
S S
Ŋ
σ
<u> </u>
()
$\mathbf{\overline{\mathbf{C}}}$
\sim
0
Ŋ
တ
$\overline{\mathbf{n}}$
ž
Ϋ́
\leq
Ð
ű
õ
1

- Large number of ATLAS searches looking for new physics in hadronic final states
 - Improved analysis techniques for leading sensitivity to many different scenarios
 - No BSM physics found (yet) keep constraining the possible phase space
 - Many ongoing analyses still not published
- All results presented so far use LHC Run-2 data
 - More and more Run-3 analyses are starting now, increased luminosity and different approaches
 - Stay tuned for more ATLAS results soon!

C. Moreno Martínez

Summary

Resonant dark jets

- Selection on jet n_{track} sculpts mass spectrum
 - Find the number of tracks P_{I} for background efficiency ϵ in each m_{II} bin
 - Signal jets will have $n_{track}^{\epsilon} = n_{track} P_J > 0$
- CR, VR and SR defined with selections on n_{tracks}^{ϵ}

$Y \rightarrow HX$ anomaly search

- Data-driven estimate for QCD multijet background
- Define CR, VR and SR with Higgs candidate
 - NN-assisted reweighting from Higgs-fail to Higgs-pass regions
 - NN trained inclusively in X candidates \rightarrow valid for all SR!

C. Moreno Martínez

Phys. Rev. D 108 (2023) 052009

