

ALPs or HNLs? Pick two!

Based on [2212.11290] and [24XX.YYYY] (to appear soon) by Marta Burgos Marcos, Arturo de Giorgi, Luca Merlo and Jean-Loup Tastet

Jean-Loup Tastet <<u>jean-loup.tastet@uam.es</u>> · SUSY24 · Madrid · 2024-06-14

Work supported by: PID2019-108892RB-I00, PID2022-137127NB-I00, CEX2020-001007-S, 860881-HIDDeN, FJC2021-047666-I

Heavy neutral leptons (HNLs) Or heavy right-handed neutrinos

- The missing $SU(2)_L$ singlet neutrinos
- Completely neutral under SM gauge, allowing both:
 - Yukawa term (EWSB \rightarrow Dirac mass) $-(Y_{\alpha I}^{\nu})^{*}(L_{\alpha} \cdot \tilde{\phi}^{\dagger})N_{R,I} \longrightarrow (m_{D})_{\alpha I}\nu_{L,\alpha}N_{R,I}$
 - Majorana mass $-\frac{M_{I}}{2}(N_{R,I}N_{R,I} + N_{R,I}^{\dagger}N_{R,I}^{\dagger})$

Type-I see-saw mechanism

- Combining both mass terms: $-\frac{1}{2}(\iota)$
- Mass diagonalisation leads to mixin
- Neutrinos are light if HNLs are heavy, i.e. $M_R \gg m_D$ (or $\Theta \ll 1$) Their masses are given by the see-saw formula:

$$m_{\alpha\beta}^{\text{light}} \approx -\sum_{I} \frac{(m_D)_{\alpha I} (m_D)_{\beta I}}{M_I} \approx -$$

$$\begin{pmatrix} \nu_L^T & N_R^T \end{pmatrix} \begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix} + h.c.$$

ng:
$$\nu_{L,\alpha} \cong U_{\alpha,i}^{\text{PMNS}} \nu_i + \Theta_{\alpha,I} N_{R,I}$$

$$\sum_{I} M_{I} \Theta_{\alpha I} \Theta_{\beta I}$$

Low-scale see-saw(s)

- Original see-saw: $Y^{\nu} \sim 1$ and $M_N \sim 10^{15} \,\mathrm{GeV}$ \rightarrow inaccessible in the foreseeable future
- Smaller Yukawas: $Y^{\nu} \sim 10^{-6} \sim Y^{e}$ and $M_{N} \sim {\rm TeV}$ \rightarrow still inaccessible to most experiments (on the "see-saw line")
- Symmetry-protected (e.g. linear or inverse see-saw) \rightarrow near-cancellation between contributions of two HNLs to m^{light}

Focus of most current experiments

(unless an ALP is present!)

HNL searches

- Many existing & proposed searches for HNLs
- Feebly interacting & possibly long-lived
- Colliders, beam dumps, kaon decays in flight, etc.
- Small mixing angle vs. HNL mass
- "See-saw line" hard to reach, especially at large masses!

From [2305.01715], but see [2305.13383] for caveats

See Víctor Enguita's talk for more details **Axion-like particles (ALPs)** ~ pseudo-Nambu-Goldstone bosons (pNGBs)

- Generated whenever an approximate global symmetry is broken
- Abundantly present in BSM models (incl. string theories)
- Shift-symmetric interactions implemented by derivative terms ∂a_{\dots} ... but broken by a mass term and anomalous couplings aXX
- Derivative coupling to fermions lead to interaction \propto fermion masses \rightarrow potentially enhanced coupling to TeV-scale HNLs!

«Just give me an ALP!»

- Someone at a recent lunch

ALP searches

- Many current or proposed searches at colliders, beam dumps, kaon decay-in-flight and pion decays
- Feebly interacting and often long-lived
- Constraints on various effective couplings (c/f_a vs. m_a)

ALPs & HNLs

ALPs and HNLs address largely orthogonal problems:

- ALPs cannot explain neutrino masses \rightarrow still need something more
- The presence of HNLs does not affect the motivation for ALPs

Why not have both?

Joint limits

A model containing HNLs and ALPs will be constrained by:

- Limits on HNLs alone
- Limits on ALPs alone

• Joint limits that only apply if you have both HNLs and ALPs \rightarrow New, unique processes that would not occur otherwise

Motivation of the present study

Effective Lagrangian

ALP kinetic term

$$\mathscr{L}_{a} = \frac{1}{2} \partial_{\mu} a \,\partial^{\mu} a - \frac{1}{2} m$$

ALP anomalous couplings

$$\mathscr{L}_{a}^{X} = -\frac{1}{4}c_{\tilde{B}}\frac{a}{f_{a}}B_{\mu\nu}\tilde{B}$$

ALP derivative couplings

$$\mathscr{L}^{\psi}_{\partial a} = \frac{\partial_{\mu}a}{f_a} \sum_{\psi} c_{\psi}\overline{\psi}$$

A new production mechanism **1 HNL, non-cascade case**

- $\frac{c_N}{f_a}\partial_\mu a \overline{N}_R \gamma^\mu N_R$ enables *new production mechanism*, from off-shell ALP $a^* \rightarrow 2N$
- HNL $\gtrsim 100 \,\text{GeV}$ above the see-saw line would decay promptly through mixing with SM ν 's

 $(\rightarrow \text{ sensitivity } down to the see-saw line)$

- Focus on reconstructible decays $(N \rightarrow W_{\rm h} \ell)$, hadronic $W_{\rm h} \rightarrow jj$
- 4 *simultaneous* invariant mass peaks

A new production mechanism **1 HNL, non-cascade case**

- $\frac{c_N}{f_a}\partial_\mu a \overline{N}_R \gamma^\mu N_R$ enables *new production mechanism*, from off-shell ALP $a^* \rightarrow 2N$
- HNL $\gtrsim 100 \,\text{GeV}$ above the see-saw line would decay promptly through mixing with SM ν 's

 $(\rightarrow \text{ sensitivity } down to the see-saw line)$

- Focus on reconstructible decays $(N \to W_{\rm h} \ell, \text{hadronic } W_{\rm h} \to jj)$
- 4 *simultaneous* invariant mass peaks

A new production mechanism 2 HNLs, cascade decay

 2+ HNLs required to explain the observed neutrino masses

•
$$\frac{c_N}{f_a}\partial_\mu a\overline{N}_R\gamma^\mu N_R \to \frac{c_{N(ij)}}{f_a}\partial_\mu a\overline{N}_R\gamma^\mu N_R\gamma^\mu N_R\gamma$$

- When the lighter HNL N_1 is produced \rightarrow same process
- Heaviest HNL N_2 decays primarily though ALP coupling \rightarrow cascade

Signal at HL-LHC and 10TeV muon collider Varied production mechanisms for *a**, but same decays

Possible search strategy

- Identify hadronically decaying $W_{\rm h} \rightarrow jj$, pair them with all leptons
- Select events with exactly 2 $W\ell$ pairs
- Plot the invariant masses, with 1st pair on x-axis & 2nd on y-axis
- Bump search along the diagonal
- Off-diagonal entries used to estimate background (notably combinatorial)

Expected joint limits

Comparison with existing limits Expected limits from the proposed search

LHC only

Limits from [2110.10698] and [2203.01734]

LHC / muon collider @ $M_N = 1 \text{ TeV}$

Conclusion

- Some models may want both

- We outlined a proposed search strategy

• ALPs and HNLs address largely orthogonal problems \rightarrow complementary?

New processes, involving ALP-HNL interactions, may become dominant

Places joint limits on ALPs and HNLs that are stronger than individual limits

We computed projected limits for searches at the LHC and muon collider

Backup slides

Production at HL-LHC & 10TeV MuC

