Symmetric moduli spaces: boundaries, geodesics and the Distance Conjecture

Veronica Collazuol

IPhT CEA/Saclay

Upcoming work with S. Baines, B. Fraiman, M. Graña and D. Waldram

Susy 2024 June 10, 2024

Consistent QFT + Einstein gravity

Consistent QFT + Einstein gravity

Consistent QFT + Quantum gravity

Consistent QFT + Einstein gravity

Consistent QFT + Quantum gravity

From string theory, we cannot get any effective field theory

Consistent QFT + Einstein gravity

Consistent QFT + Quantum gravity

[Brennan, Carta, Vafa '17][Palti '19] [Agmon, Bedroya, Kang, Vafa '22] [van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21] [Grana, Herraez '21]

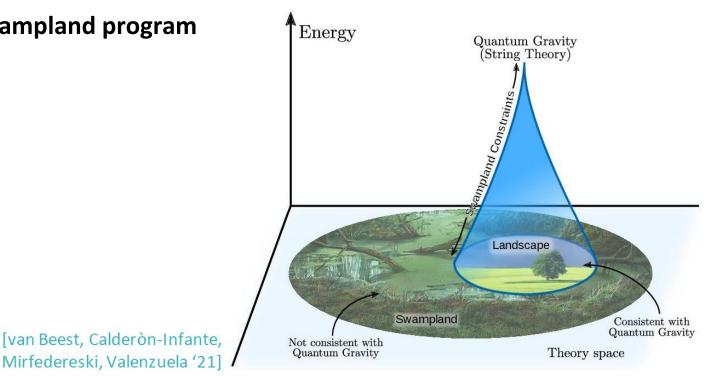
From string theory, we cannot get any effective field theory

Consistent QFT + Einstein gravity

Consistent QFT + Quantum gravity

[Brennan, Carta, Vafa '17][Palti '19] [Agmon, Bedroya, Kang, Vafa '22] Calderon-Infante, [van Beest, Mirfendereski, Valenzuela **'21**] [Grana, Herraez '21]

From string theory, we cannot get any effective field theory



Consistent QFT + Einstein gravity

Consistent QFT + Quantum gravity

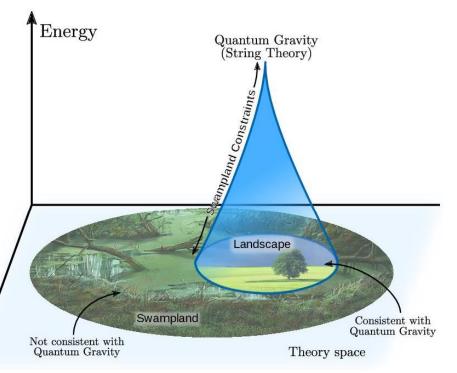
[Brennan, Carta, Vafa '17][Palti '19] [Agmon, Bedroya, Kang, Vafa '22] [van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21] [Grana, Herraez '21]

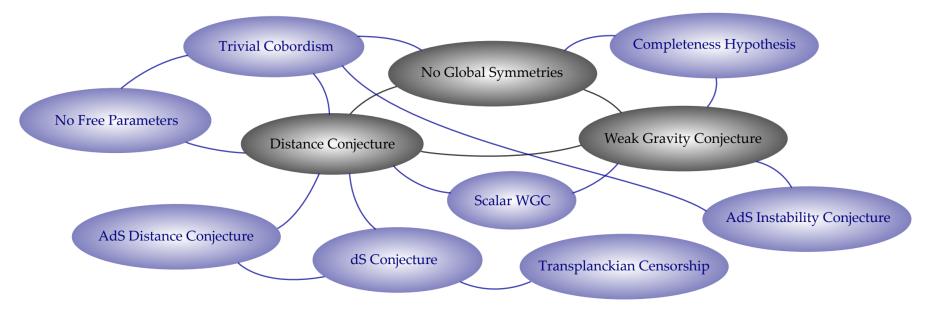
From string theory, we cannot get any effective field theory

Swampland program

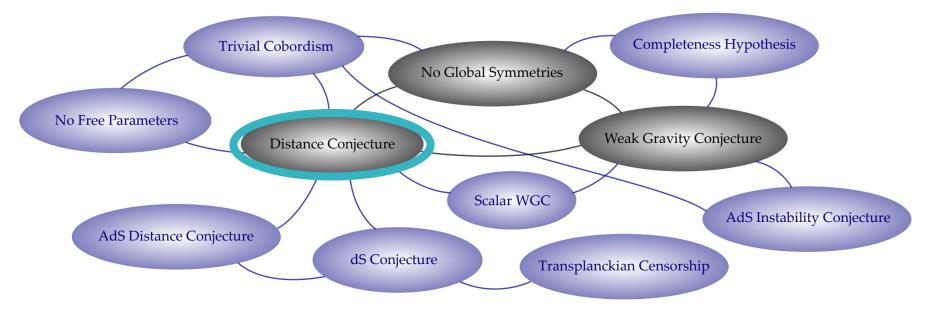
- Universal features from string compactifications
- Bottom-up arguments (eg. black hole physics)

[van Beest, Calderòn-Infante, Mirfedereski, Valenzuela '21]



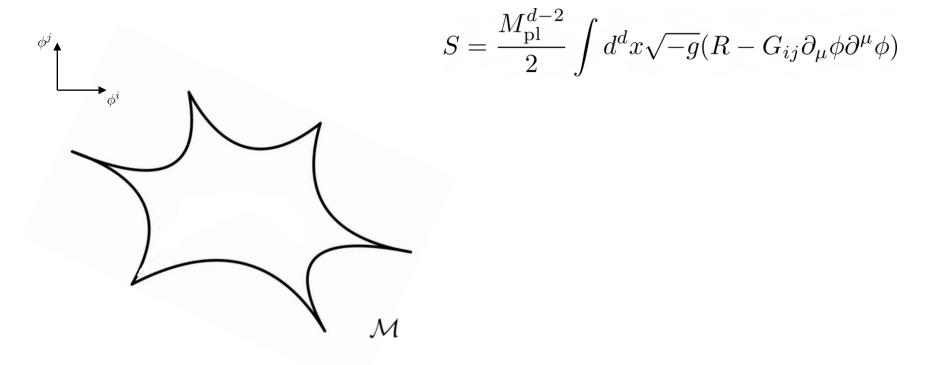


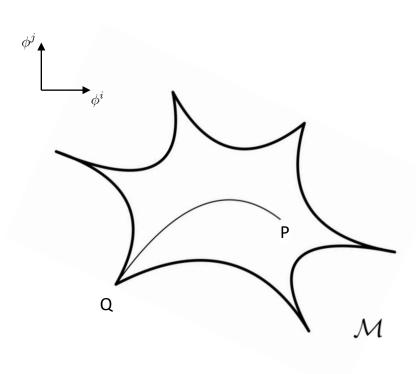
[van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21]



[van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21]

$$S = \frac{M_{\rm pl}^{d-2}}{2} \int d^d x \sqrt{-g} (R - G_{ij} \partial_\mu \phi \partial^\mu \phi)$$



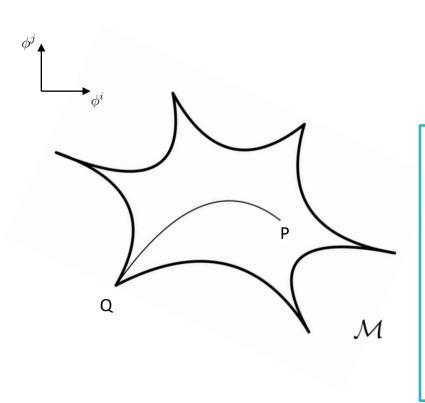


$$S = \frac{M_{\rm pl}^{d-2}}{2} \int d^d x \sqrt{-g} (R - G_{ij} \partial_\mu \phi \partial^\mu \phi)$$

Moving in moduli space from a point P towards a point Q an infinite geodesic distance away, an infinite tower of states becomes exponentially light (in Planck units) as

$$M(Q) \sim M(P) e^{-\alpha \, d_{P,Q}}$$

[Ooguri, Vafa, '06]



$$S = \frac{M_{\rm pl}^{d-2}}{2} \int d^d x \sqrt{-g} (R - G_{ij} \partial_\mu \phi \partial^\mu \phi)$$

Moving in moduli space from a point P towards a point Q an infinite geodesic distance away, an infinite tower of states becomes exponentially light (in Planck units) as

$$M(Q) \sim M(P) e^{-\alpha \, d_{P,Q}}$$

[Ooguri, Vafa, '06]

The tower can be (Emergent string conjecture): [Lee, Lerche, Weigand '19]

- Oscillators of a tensionless critical string

Motivation

Geometry of moduli spaces **Spectrum** of the theory

- Geodesics
- Structure of the boundary

Motivation

Geometry of moduli spaces **Spectrum** of the theory

- Geodesics
- Structure of the boundary

Clear connection for symmetric moduli spaces:

 \nearrow (Connected) group of isometries of \mathcal{M}

$$\mathcal{M} \sim G(\mathbb{Z}) \setminus \frac{G(\mathbb{R})}{K} \xrightarrow{\text{Subgroup of isometries}}$$
Duality group \checkmark fixing one point, o

Motivation

Geometry of moduli spaces \leftarrow **Spectrum** of the theory

- Geodesics
- Structure of the boundary

Clear connection for symmetric moduli spaces:

$$\checkmark$$
 (Connected) group of isometries of \mathcal{M}

$$\mathcal{M} \sim G(\mathbb{Z}) \setminus \frac{G(\mathbb{R})}{K} \xrightarrow{\text{Subgroup of isometries}} \text{Subgroup of isometries}$$

From string theory:

- M theory on T^d :
- Heterotic on T^d:
- CHL string on T^d:
- Bosonic string on T^d: G = O(d, d)

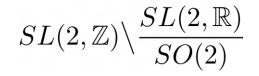
$$G = E_{d(d)}$$

G = O(d, d+8)

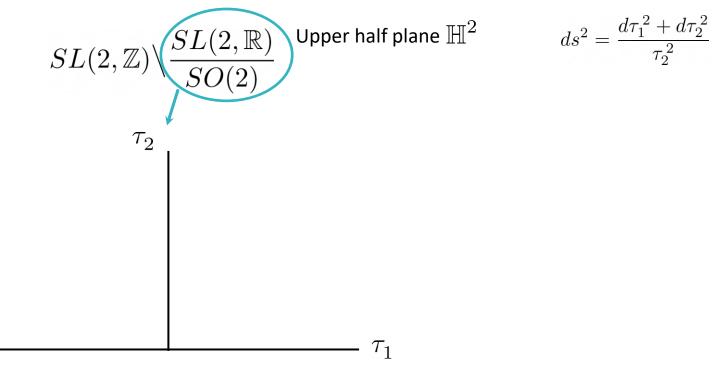
$$G = O(d, d + 16)$$

...but also non supersymmetric strings

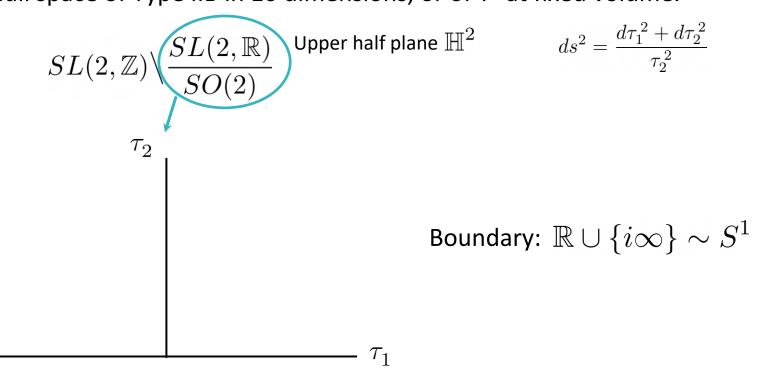
Moduli space of Type IIB in 10 dimensions, or of T² at fixed volume.



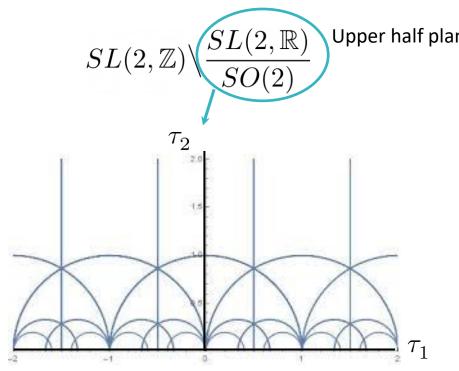
Moduli space of Type IIB in 10 dimensions, or of T² at fixed volume.



Moduli space of Type IIB in 10 dimensions, or of T² at fixed volume.



Moduli space of Type IIB in 10 dimensions, or of T² at fixed volume.

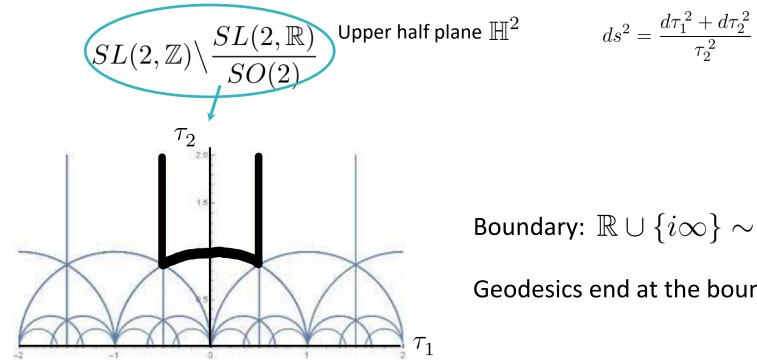


Upper half plane \mathbb{H}^2 $ds^2 = \frac{d{\tau_1}^2 + d{\tau_2}^2}{{\tau_2}^2}$

Boundary: $\mathbb{R} \cup \{i\infty\} \sim S^1$

Geodesics end at the boundary

Moduli space of Type IIB in 10 dimensions, or of T^2 at fixed volume.

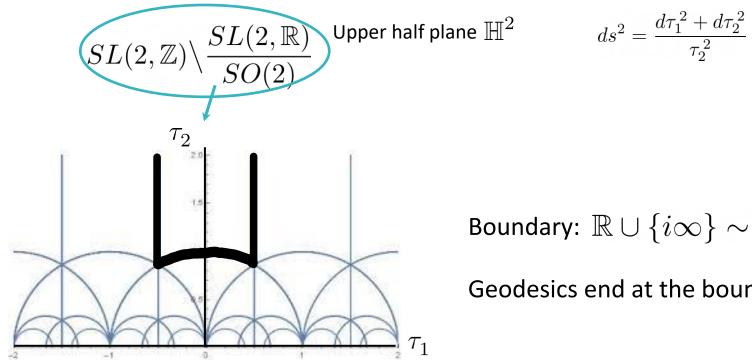


Boundary: $\mathbb{R} \cup \{i\infty\} \sim S^1$

Geodesics end at the boundary

Restrict to one fundamental domain: one point at infinity $SL(2,\mathbb{Z})$:

Moduli space of Type IIB in 10 dimensions, or of T^2 at fixed volume.



Boundary: $\mathbb{R} \cup \{i\infty\} \sim S^1$

Geodesics end at the boundary

Restrict to one fundamental domain: one point at infinity $SL(2,\mathbb{Z})$:

> Geodesics on \mathbb{H}^2 either go to the boundary, or have an [Keurentjes, '06] ergodic or periodic motion.

[Borel, Ji '06]

Use the geodesic flow to study the boundary of these spaces.

[Borel, Ji '06]

Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

 $\gamma(t) = g e^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$

Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

$$\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$$

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:

$$\lim_{t \to +\infty} d(\gamma_1(t), \gamma_2(t)) < \infty$$

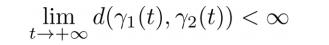
[Borel, Ji '06]

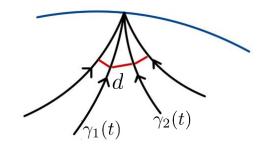
Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

$$\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathbb{P}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$$

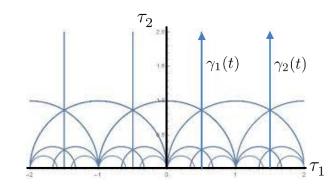
 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:





[Borel, Ji '06]

 $ds^2 = \frac{d\tau_1^2 + d\tau_2^2}{{\tau_2}^2}$



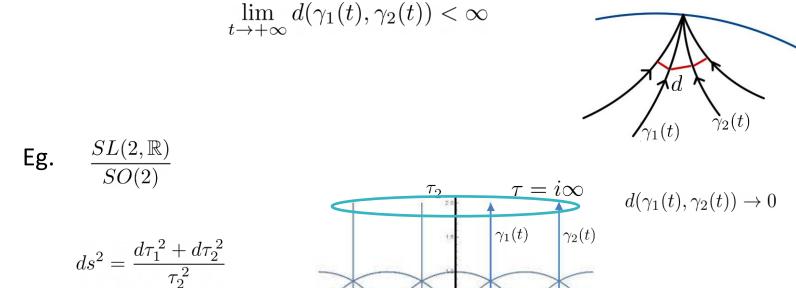
$$d(\gamma_1(t), \gamma_2(t)) \to 0$$

Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

$$\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$$

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:



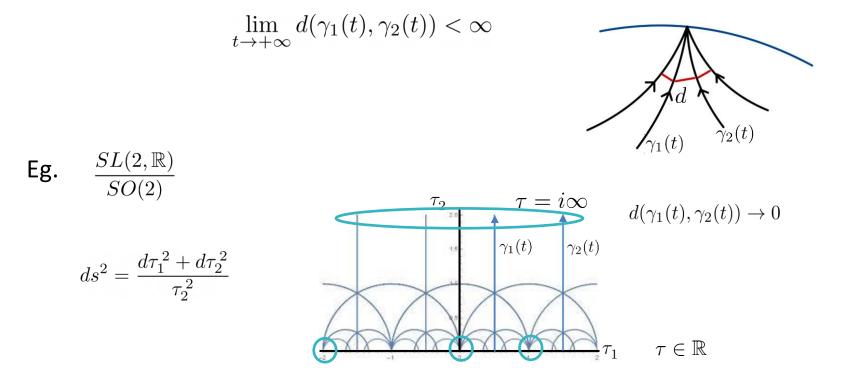
Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

$$\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$$

[Borel, Ji '06]

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:



Use the geodesic flow to study the boundary of these spaces.

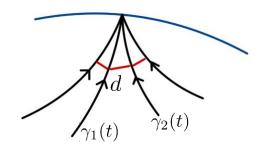
<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

$$\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$$

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:

 $\lim_{t \to +\infty} d(\gamma_1(t), \gamma_2(t)) < \infty$

 points at infinity corresponding to parabolic subgroups



[Borel, Ji '06]

Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form $on \mathfrak{g}$)

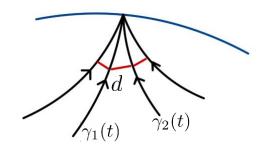
 $\gamma(t) = ge^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}$

points at infinity as equivalence classes of **asymptotic geodesics**, with equivalence relation:

 $\lim_{t \to +\infty} d(\gamma_1(t), \gamma_2(t)) < \infty$

points at infinity corresponding to parabolic subgroups

Cartan generators $h \longrightarrow$ radii of T^d Ladder operators ----- compact moduli



[Borel, Ji '06]

Use the geodesic flow to study the boundary of these spaces.

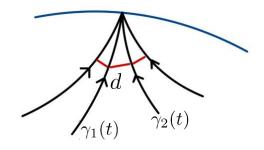
<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

 $\gamma(t) = g e^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathfrak{p}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:

 $\lim_{t \to +\infty} d(\gamma_1(t), \gamma_2(t)) < \infty$

points at infinity corresponding to parabolic subgroups



[Borel, Ji '06]

Cartan generators $h \longrightarrow$ radii of T^d Ladder operators \longrightarrow compact moduli

• Each point at infinity can be described by $\,\gamma(t)=e^{ht}\cdot o$

Use the geodesic flow to study the boundary of these spaces.

<u>Geodesics</u> (distance induced from the Killing form on \mathfrak{g})

 $\gamma(t) = g e^{tX} \cdot o, \quad g \in G, \quad t \in \mathbb{R}, \quad X \in \mathbb{P}^{e^{\mathfrak{p}} \sim \frac{G}{K}}$

 points at infinity as equivalence classes of asymptotic geodesics, with equivalence relation:

 $\lim_{t \to +\infty} d(\gamma_1(t), \gamma_2(t)) < \infty$

points at infinity corresponding to parabolic subgroups $\gamma_1(t)$ $\gamma_2(t)$

[Borel, Ji '06]

Cartan generators $h \longrightarrow$ radii of T^d Ladder operators \longrightarrow compact moduli

- Each point at infinity can be described by $\,\gamma(t)=e^{ht}\cdot o$
- Considering the duality group, information of the boundary contained in $G(\mathbb{Q})$: only rational compact moduli.

[Cecotti '15]

Assumptions: (motivated by string compactifications)

• Existence of a lattice of states $\Sigma \hookrightarrow V$ on which G acts

$$d_V(v,w) = v^T g^T g w, \quad v,w \in V, \ g \in \frac{G}{K}$$

[Cecotti '15]

Assumptions: (motivated by string compactifications)

• Existence of a lattice of states $\Sigma \hookrightarrow V$ on which G acts

$$d_V(v,w) = v^T g^T g w, \quad v,w \in V, \ g \in \frac{G}{K}$$

• Completeness of the spectrum

[Cecotti '15]

Assumptions: (motivated by string compactifications)

• Existence of a lattice of states $\Sigma \hookrightarrow V$ on which G acts

$$d_V(v,w) = v^T g^T g w, \quad v,w \in V, \ g \in \frac{G}{K}$$

- Completeness of the spectrum
- The mass of a state $q\in\Sigma$ in the background specified by $g\in \frac{G}{K}$ is $M_q^2=d_V(q,q)$

[Cecotti '15]

Assumptions: (motivated by string compactifications)

- Existence of a lattice of states $\Sigma \hookrightarrow V$ on which G acts

$$d_V(v,w) = v^T g^T g w, \quad v,w \in V, \ g \in \frac{G}{K}$$

- Completeness of the spectrum
- The mass of a state $q\in \Sigma$ in the background specified by $g\in rac{G}{K}$ is $M_q^2=d_V(q,q)$

Along the geodesics
$$g \to \gamma(t)$$

$$M_q^2(t) = q^T \gamma(t)^T \gamma(t) q \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

[Cecotti '15]

Assumptions: (motivated by string compactifications)

• Existence of a lattice of states $\Sigma \hookrightarrow V$ on which G acts

$$d_V(v,w) = v^T g^T g w, \quad v,w \in V, \ g \in \frac{G}{K}$$

- Completeness of the spectrum
- The mass of a state $q\in \Sigma$ in the background specified by $g\in rac{G}{K}$ is $M_q^2=d_V(q,q)$

Along the geodesics
$$g \to \gamma(t)$$

$$M_q^2(t) = q^T \gamma(t)^T \gamma(t) q \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

There is always a massless tower.

• We parametrize the boundaries of symmetric moduli spaces, accounting for the action of dualities.

Conclusions

- We parametrize the boundaries of symmetric moduli spaces, accounting for the action of dualities.
- Knowing the geodesics, we can write explicitly the string spectrum: the distance conjecture is satisfied.

Conclusions

- We parametrize the boundaries of symmetric moduli spaces, accounting for the action of dualities.
- Knowing the geodesics, we can write explicitly the string spectrum: the distance conjecture is satisfied.

Thank you!