Euclidean Subtleties

Euclidean Flows

Wormholes

Conclusions

Euclidean flows, wormholes and holography

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Work with A. Anabalón and A. Guarino arXiv: 2312.13955

SUSY 2024

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Euclidean Subtleties

Euclidean Flows

Vormholes

Conclusions

1 Why Euclidean Solutions?

- 2 Euclidean Subtleties
- **3** Euclidean Flows
- 4 Wormholes
- **5** Conclusions

Álvaro Arboleya Megido

Why Euclidean Solutions? $\circ \bullet$

Euclidean Subtletie

Euclidean Flov

Normholes

Conclusions

Why Euclidean Solutions?

$$Z_{\rm QM} = \int dq \langle q | e^{-\beta H} | q \rangle, \quad \langle q_F | e^{-itH} | q_I \rangle \longrightarrow \begin{cases} t \to -i\tau \\ q_I = q_F \\ q(\tau + \beta) = q(\tau) \end{cases}$$

Lorentz Path integral $\xrightarrow{\tau \sim \tau + \beta}$ Thermodynamics Wick rotation

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows	Wormholes	Conclusions
○●		000	000	000
Why Euclidean Sol	utions?			

$$Z_{\rm QM} = \int dq \langle q | e^{-\beta H} | q \rangle, \quad \langle q_F | e^{-itH} | q_I \rangle \longrightarrow \begin{cases} t \to -i\tau \\ q_I = q_F \\ q(\tau + \beta) = q(\tau) \end{cases}$$

 $\mbox{Lorentz Path integral} \quad \xrightarrow[]{\tau \sim \tau + \beta} \\ \hline \mbox{Wick rotation} \\ \hline \mbox{Thermodynamics} \\ \hline \mbox{} \\$

Why not with gravity?

$$Z[\beta] = \int [dg] e^{-S_E}$$

- Black hole thermodynamics [Hawking, 1974]
- Saddle-point approximation → Euclidean wormholes [see Hebecker, Mikhail and Soler, 2018]

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

1 Why Euclidean Solutions?

2 Euclidean Subtleties

- **3** Euclidean Flows
- 4 Wormholes
- **5** Conclusions

Álvaro Arboleya Megido

- We seeking (Euclidean) supergravity solutions with scalars
- The simplest stringy models come with axion/dilaton pairs
- Euclideanization of axions:

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows	Wormholes	Conclusions
	0●00000	000	000	000
Euclidean Subtleties	5			

- We seeking (Euclidean) supergravity solutions with scalars
- The simplest stringy models come with axion/dilaton pairs
- Euclideanization of axions:

$$* \ \chi \xrightarrow{Eucl} i\chi \implies$$
 Wrong kinetic terms

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows	Wormholes	Conclusions
	0●00000	000	000	000
Euclidean Subtleties	;			

- We seeking (Euclidean) supergravity solutions with scalars
- The simplest stringy models come with axion/dilaton pairs
- Euclideanization of axions:

$$* \ \chi \xrightarrow{Eucl} i\chi \implies$$
 Wrong kinetic terms

* Dual 2-form
$$\implies$$
 Potential?

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows	Wormholes	Conclusions
	000000	000	000	000
Euclidean Subtleties	;			

- We seeking (Euclidean) supergravity solutions with scalars
- The simplest stringy models come with axion/dilaton pairs
- Euclideanization of axions:

$$* \ \chi \xrightarrow{\text{Eucl}} i\chi \implies$$
 Wrong kinetic terms

- * Dual 2-form \implies Potential?
- * Euclidean SUGRA: SUSY \implies Double d.o.f.

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusions 000
From Lorentzian to	Euclidean			

- Lorentzian: SO(1,3)
 - Two independent spinorial irreps: χ , $\tilde{\chi} \longrightarrow \begin{pmatrix} \chi \\ \tilde{\chi} \end{pmatrix}$
 - Complex but mutually conjugated: $\chi \stackrel{*}{\longleftrightarrow} \tilde{\chi}$
 - Left and right are not independent (Majorana condition)
- Euclidean: $SO(4) \sim SU(2)_I \times SU(2)_r$
 - Two independent spinorial irreps: χ , $\tilde{\chi}$
 - Real representations \Rightarrow self-contained: $\begin{cases} \chi \circlearrowright \\ \ddots \circlearrowright \end{cases}$
 - Left and right are **independent**

Euclidean Subtleties

Euclidean Flow

Wormholes

Conclusions

• Lorentzian chiral multiplet:
$$(Z, \hat{\chi} = \begin{pmatrix} \chi \\ \tilde{\chi} \end{pmatrix}, F)$$

$$\delta Z = i\epsilon^{T}(i\sigma_{2})\chi$$

$$\delta \bar{Z} = i\tilde{\epsilon}^{T}(i\sigma_{2})\tilde{\chi} \xrightarrow[Majorana]{Majorana} = (\delta Z)^{*}$$

• **Euclidean** chiral multiplet: $(Z, \tilde{Z}, \chi, \tilde{\chi}, F)$

$$\tilde{Z} \neq \bar{Z} \longrightarrow$$
 double d.o.f

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusions 000
(Euclidean) STU m	odel			

 $\mathcal{N}=2$ **STU-model** from U(1)⁴ inv. sector of 11D SUGRA on S⁷

$$g_{\mu
u}$$
, $2 \psi_{\mu}$, $4 A_{\mu}$, $3 z_{i}$
 \downarrow
 $S_{\text{Lor}} = \frac{1}{2\kappa^{2}} \int d^{4}x \, e \left[\frac{R}{2} - \frac{\partial_{
ho} z_{i} \partial^{
ho} \bar{z}_{i}}{(1 - z_{i} \bar{z}_{i})^{2}} + g^{2} \left(3 - \frac{2}{1 - z_{i} \bar{z}_{i}} \right) \right]$

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusions 000
(Euclidean) STU m	odel			

 $\mathcal{N}=2$ **STU-model** from U(1)⁴ inv. sector of 11D SUGRA on S⁷

$$g_{\mu\nu} \quad , \quad 2 \ \psi_{\mu} \quad , \quad 4 \ A_{\mu} \quad , \quad 3 \ z_{i}$$

$$\downarrow$$

$$S_{\text{Eucl}} = \frac{1}{2\kappa^{2}} \int d^{4}x \ e \left[-\frac{R}{2} + \frac{\partial_{\rho} z_{i} \partial^{\rho} \tilde{z}_{i}}{(1 - z_{i} \tilde{z}_{i})^{2}} + g^{2} \left(3 - \frac{2}{1 - z_{i} \tilde{z}_{i}} \right) \right]$$

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusions 000
(Euclidean) STU m	odel			

 $\mathcal{N}=2$ **STU-model** from U(1)⁴ inv. sector of 11D SUGRA on S⁷

$$g_{\mu\nu} \quad , \quad 2 \ \psi_{\mu} \quad , \quad 4 \ A_{\mu} \quad , \quad 3 \ z_{i} \qquad \qquad \downarrow$$
$$S_{\text{Eucl}} = \frac{1}{2\kappa^{2}} \int d^{4}x \ e \left[-\frac{R}{2} + \frac{\partial_{\rho} z_{i} \partial^{\rho} \tilde{z}_{i}}{(1 - z_{i} \tilde{z}_{i})^{2}} + g^{2} \left(3 - \frac{2}{1 - z_{i} \tilde{z}_{i}} \right) \right]$$

• Solutions with **non-backreacted** metric but scalar profiles.

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusi 000

Holographic dual: ABJM

 ABJM: U(N)×U(N) Superconformal Chern–Simons matter theory.

Field	$U(N) \times U(N)$	$U(1)_R$
$(A_{\mu}, \sigma, \lambda, D)$	(adj, 1)	(0, 0, 1, 0)
$(\tilde{A}_{\mu}, \tilde{\sigma}, \tilde{\lambda}, \tilde{D})$	(1 , adj)	(0, 0, 1, 0)
(Z^a,χ^a,F^a)	$(ar{\mathbf{N}},\mathbf{N})$	(1/2, -1/2, -3/2)
(W_{a},η_{a},G_{a})	$(\mathbf{N},ar{\mathbf{N}})$	(1/2, -1/2, -3/2)

$$\mathcal{F}_{\mathrm{ABJM}} = \mathcal{S}_{\mathrm{on-shell}}^{\mathrm{EAdS}} = rac{2\pi^2}{\kappa^2 g^2}$$

Scalars \implies ABJM deformations

 $\begin{array}{l} \mbox{Holographic renormalization} \oplus \mbox{Legendre transform} \longrightarrow J_{\rm on-shell} \\ [Bianchi, \mbox{Freedman} and Skenderis, 2022] \end{array}$

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

F-theorem

For three-dimensional field theories, the finite part of the free energy on \mathbf{S}^3 decreases along RG trajectories and is stationary at the fixed points. [Jafferis , Klebanov, Pufu and Safdi, 2011]

Álvaro Arboleya Megido

F-theorem

For three-dimensional field theories, the finite part of the free energy **on** \mathbf{S}^3 decreases along RG trajectories and is stationary at the fixed points. [Jafferis , Klebanov, Pufu and Safdi, 2011]

Ansatz: S^3 boundary and SO(4) ~ SU(2)₁×SU(2)_r bulk isometry

$$ds_4^2 = d\mu^2 + g^{-2}e^{2A(\mu)}d\Sigma_{\mathrm{S}^3}^2$$

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows ●00	Wormholes 000	Conclusions 000

1 Why Euclidean Solutions?

2 Euclidean Subtleties

3 Euclidean Flows

4 Wormholes

6 Conclusions

Álvaro Arboleya Megido

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 0●0	Wormholes 000	Conclusions 000
Non-backreacted Sc	olutions			

$$ds^2 = ds^2_{\mathsf{EAdS}_4}$$
 and $z_2 = \tilde{z}_2 = z_3 = \tilde{z}_3 = 0$

Singular solution:
$$z_1 = 0$$
 , $\tilde{z}_1 = \frac{\tilde{c}_1}{\sinh^2(\frac{1}{2}g\mu)}$

Regular solution: $z_1 = rac{c_1}{\cosh^2\left(rac{1}{2}m{g}\mu
ight)}$, $ilde{z}_1 = 0$

* Most general SUSY non-backreacted solutions.

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 00●	Wormholes 000	Conclusions 000
F-theorem				

$$J_{\text{on-shell}}\Big|_{\text{non-back}} = J_{\text{on-shell}}^{\text{EAdS}_4} \left(1 - c_1^2\right)$$

Dual to real mass deformations of ABJM on S³ \downarrow Equivalent to a reassignment of U(1)_R charges of Z_a and W_a. [Freedman and Pufu, 2014]

$$R[Z^1] = R[Z^2] = \frac{1}{2} + \delta_1 , \ R[W_1] = R[W_2] = \frac{1}{2} - \delta_1$$

$$\mathcal{F} = \mathcal{F}_0 \sqrt{16 R[Z^1] R[Z^2] R[W_1] R[W_2]} = \mathcal{F}_0 (1 - (2\delta_1)^2)$$

[Jafferis, Klebanov, Pufu and Safdi, 2011]

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?

- 2 Euclidean Subtleties
- **3** Euclidean Flows
- **4** Wormholes
- **5** Conclusions

Álvaro Arboleya Megido

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds^{2} = -dt^{2} + dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right)$$

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds_{\mathrm{EAdS}}^2 = d\mu^2 + g^{-2}\sinh^2(g\mu)d\Sigma_{\mathrm{S}^3}^2$$

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds_{
m WH}^2 = d\mu^2 + g^{-2} rac{\sinh^2(g\mu) + 1}{k^2} d\Sigma_{
m S^3}^2$$

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds_{\rm WH}^2 = d\mu^2 + g^{-2} \frac{\sinh^2(g\mu) + 1}{k^2} d\Sigma_{\rm S^3}^2$$

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds_{
m WH}^2 = d\mu^2 + g^{-2} rac{\sinh^2(g\mu) + 1}{k^2} d\Sigma_{
m S^3}^2$$

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○●○	Conclusions 000
Wormholes				

$$ds_{\rm WH}^2 = d\mu^2 + g^{-2} \frac{\sinh^2(g\mu) + 1}{k^2} d\Sigma_{\rm S^3}^2$$

$$z_i = rac{\lambda_i \sqrt{k_i^2 + 1}}{k_i - \sinh(g\mu)}$$
 , $\tilde{z}_i = rac{\lambda_i^{-1} \sqrt{k_i^2 + 1}}{k_i + \sinh(g\mu)}$ with $\sum_i k_i^2 = k^2 - 2$

- NO SUSY
- Complex nature when uplifted to 11D SUGRA.

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows	Wormholes 00●	Conclusions 000
Free Energy				

$$S_{\text{on-shell}}\Big|_{\text{WH}} = J_{\text{on-shell}}\Big|_{\text{WH}} = 0$$
.

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○○●	Conclusions 000
Free Energy				

$$S_{\text{on-shell}}\Big|_{\text{WH}} = J_{\text{on-shell}}\Big|_{\text{WH}} = 0$$
.

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○○●	Conclusions 000
Free Energy				

$$S_{\text{on-shell}}\Big|_{\text{WH}} = J_{\text{on-shell}}\Big|_{\text{WH}} = 0$$
.

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○○●	Conclusions 000
Free Energy				

$$S_{\text{on-shell}}\Big|_{\text{WH}} = J_{\text{on-shell}}\Big|_{\text{WH}} = 0$$
.

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes ○○●	Conclusions 000
Free Energy				

$$S_{\text{on-shell}}\Big|_{\text{WH}} = J_{\text{on-shell}}\Big|_{\text{WH}} = 0$$
.

• The absence of supersymmetry makes a holographic test of the zero gravitational free energy difficult.

Why Euclidean Solutions?

- 2 Euclidean Subtleties
- **3** Euclidean Flows
- 4 Wormholes

Álvaro Arboleya Megido

Why Euclidean Solutions?	Euclidean Subtleties	Euclidean Flows 000	Wormholes 000	Conclusions ○●○
C 1 1				

Conclusions

We constructed new classes of $U(1)^4$ -invariant Euclidean solutions in the four-dimensional STU-model.

- Running scalar solutions with a non-backreacted EAdS4
 - * Dual to real mass deformations of ABJM
 - * Free energy decreases along the flow and has a maximum at the UV fixed point.
- Euclidean wormhole solutions
 - * Complex nature when uplifted to 11D SUGRA
 - * Zero gravitational free energy (independent of renormalization scheme)
 - * Holographic understanding of WH remains unclear

Euclidean Subtleties

Euclidean Flows 000 Normholes

Conclusions

Álvaro Arboleya Megido

Universidad de Oviedo & ICTEA