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Motivation

Modular symmetry has been successfully used as a guiding
principle to explain several puzzles in the SM:

Fermion mass hierarchy,
Flavor mixing,
CP violation,

where a scalar (modulus) field, determines the Yukawa coupling.

The vacuum of the modulus potential is important but dynamics
of modulus field is less so.
The dynamics of modulus field can be used to realize inflation.

More on modular inflation: 1604.02995, 2208.10086, 2303.02947, 2405.08924
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Modular Symmetry I

Modular Group SL(2,Z)

Γ =

{(
a b
c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

Modular Transformation

τ → γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ Γ, Imτ > 0 .

S =

(
0 1

−1 0

)
: τ → −1

τ
, T =

(
1 1
0 1

)
: τ → τ + 1 ,

Modular Forms

f(γτ) = (cτ + d)kf(τ), γ ∈ Γ ,

where the weight k is a generic non-negative integer.
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Modular Symmetry II:Fundamental domain
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Modular Symmetry III

The derivative of a weight k modular form f satisfies:

f ′(γτ) = (cτ + d)k+2f ′(τ) +
k

2πi
c(cτ + d)k+1f(τ), γ ∈ Γ ,

For a weight 0 modular form, it’s derivative is a weight 2 modular form.
There are 3 fixed points (under S or T or their combinations) in the
fundamental domain:

i, ω = e
2πi
3 , i∞

Derivatives of wight 0 modular form have to vanishes there.
i and ω are natural candidates for vacuum!
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Modular Symmetry from String Theory

D = 10 Superstring Dialton S and other fields

D = 4, N = 1 SUGRA Modular invariant scalar potential for S and τ

Compactifycation modulus fields: massless scalar fields with no potential

moduli stabilization: generate potential, positive mass and vev
M10 = M6 ×M4

M6 = T 2 × T 2 × T 2

Kähler modulus τ and complex structure modulus

Modular group is the mapping class group of torus
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SuperGravity framework

In SUGRA, scalar potential is determined by Kähler potential K and
superpotential W in a combined way:

G(τ, τ̄ , S, S̄) = K(τ, τ̄ , S, S̄) + ln |W(τ, S)|2 ,

And the scalar potential reads:

V (τ, S) = eK(KαβDαWDβW − 3|W|2)

= eG(GαGαβ̄Gβ̄ − 3)

where the covariant derivative is defined by DαW ≡ ∂αW +W(∂αK)

and Kαβ is the inverse of the Kähler metric Kαβ = ∂α∂βK. The total
bosonic action:

S =

∫
d4x

√
−g

[
M2

Pl
2

R− gµνKαβ∂µϕ
α∂νϕβ − V (ϕ)

]
,
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Potential setup I

K(τ, τ̄ , S, S̄) = K(S, S̄)− 3 ln(−i(τ − τ̄)) ,

W(S, τ) = Λ3
W

Ω(S)H(τ)

η6(τ)
,

We assume dialton S is stabilized.
η is the Dedekind eta function with a modular weight 1/2:

η(τ) = q1/24
∞∏
n=1

(1− qn), q ≡ e2πiτ ,

Under Modular transformation, they reads:

−3 ln [−i(τ − τ̄)] → −3 ln [−i(τ − τ̄)] + 3 ln(cτ + d) + 3 ln(cτ̄ + d) .

W → eiδ(γ)(cτ + d)−3W ,

G(τ, τ̄ , S, S̄) and potential are modular invariant.
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Potential setup II

The most general form without singularity inside the fundamental
domain:

H(τ) = (j(τ)− 1728)m/2j(τ)n/3P(j(τ)) , m, n ∈ N ,

where j is called Klein j invariant.

j(i∞) = +∞ , j(ω) = 0 , j(i) = 1728 = 123 .

m, n determine vacua of the potential and we choose:
m = 0, n ≥ 2, slow roll from i (saddle point) to ω (Minkowski
minimum) along the arc.
m ≥ 2, n ≥ 2, we consider slow roll from i∞ to the fixed point ω
(Minkowski minimum) along the left boundary.
m = n = 0, slow roll from i (saddle point) to ω (dS minimum)
along the arc (King, Wang, 2405.08924).

W.B.Zhao (BCTP, Uni.Bonn) Modular Stabilization and Inflation June 13th, SUSY24 10 / 16



Inflation in the Fundamental domain

Modular symmetry + Reality of potential
stabilize the orthogonal direction of inflation!
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Full potential

We choose the following polynomial:

P(j(τ)) = 1 + β

(
1− j(τ)

1728

)
+ γ

(
1− j(τ)

1728

)2

,

and the full potential reads:

V (τ) =
Λ4
S

i(τ − τ̄)3|η(τ)|12
[
(A(S, S̄)− 3)|H(τ)|2 + V̂ (τ, τ̄)

]
,

A(S, S̄) =
KSS̄DSWDS̄W̄

|W |2
=

KSS̄ |ΩS +KSΩ|2

|Ω|2
,

V̂ (τ, τ̄) =
−(τ − τ̄)2

3

∣∣∣∣Hτ (τ)−
3i

2π
H(τ)Ĝ2(τ, τ̄)

∣∣∣∣2 ,
Z(τ, τ̄) =

1

i(τ − τ̄)3|η(τ)|12
,

In short, 3 parameter sets: (m,n), (β, γ), A(S, S̄)
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Slow roll along the unit arc

m = 0, n ≥ 2: τ = ρeiθ and τ = i is the start point of inflation:

V > 0 ⇒ A(S, S̄) > 3 ,

εV =
1

2

(
V ′

V

)2

≪ 1 ⇒ modular symmetry ,

ηV =
V ′′

V
≪ 1 ⇒ (β, γ) .
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Example: m = 0, n = 2, A = 24.3091 and β = 0.126425, γ = 0.
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Slow roll along the unit arc
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(b) with β.
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(c) with γ.

Taylor expansion: V (ϕ) = V0(1−
∑∞

k=1C2kϕ
2k) ,

The simplest case, P (j) = 1 gives too small spectral index.
The rest: r < 10−6, α ≈ −10−4.
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Slow roll in the left boundary

m ≥ 2, n ≥ 2: τ = Re(τ) + i Im(τ).
Accidental inflation: up-lifting of adjacent minimum leads to inflation.
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m = 2, n = 2 and β = −0.633431

A narrow region for slow roll + ultra slow roll:

357.85 < A < 358.75
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Summary

It is interesting to combine modular symmetry with inflation.
Modular symmetry is a strong constraint as well as a useful handle.
Three parameter sets: A(S, S̄), (m,n), (β, γ).
Two inflationary trajectories: Along the arc or left boundary.
Outlook:

Maybe fine-tuned. A more natural way?
Dynamics of dilaton field?
Non-single field inflation?
Post-inflation: preheating, reheating?

Thanks for your attention!
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Eisenstein series

The Eisenstein series G2k(τ) of weight 2k for integer k > 1 is defined as:

G2k(τ) =
∑

n1,n2∈Z
n1,n2 ̸=(0,0)

(n1 + n2 τ)
−2k ,

and the Fourier series of Eisenstein series read:

G2k(q) = 2ζ(2k)

(
1 + c2k

∞∑
i=1

σ2k−1(i)q
i

)
,

where the coefficients c2k are given by

c2k =
(2πi)2k

(2k − 1)!ζ(2k)
= −−4k

B2k
=

2

ζ(1− 2k)
. (1)

Here Bn are the Bernoulli numbers, ζ(z) is the Riemann’s zeta function
and σp(n) is the divisor sum function,

σp(n) =
∑
d|n

dp . (2)
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j invariant

The Klein j-invariant function is a modular form of weight zero, defined
in terms of Dedekind eta function and Eisenstein series as follows:

j(τ) ≡ 3653

π12

G3
4(τ)

η24(τ)
=

3653

π12

G3
4(τ)

∆(τ)
, ∆(τ) ≡ η24(τ) ,

For convenience, the q-expansion of j-function is given by

j(τ) = 744 +
1

q
+ 196884q + 21493760q2 + 864299970q3

+20245856256q4 + 333202640600q5 + 4252023300096q6

+44656994071935q7 +O(q8) .
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Vacuum structure of the potential

The vacuum structure of this potential at τ = i and at τ = ω = ei2π/3

has been extensively studied in 2212.03876, where they find the
following results based on the choice of (m,n):

If m = n = 0, then both fixed points can have a de Sitter (dS)
vacuum.
If m > 1, n = 0, then τ = ω is a dS minimum, while τ = i is
Minkowski minimum.
If m = 0, n > 1, then τ = i is a conditional dS minimum, which
depends on the value of A(S, S̄). τ = ω is always a Minkowski
minimum.
If m = 1, n > 0 or n = 1,m > 0, the vacuum is unstable.
If m > 1, n > 1, then we always have Minkowski extrema in these
two fixed points.
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Slow roll along the unit arc
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P(j) = 1 + β(1− j/1728) .
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Slow roll along the unit arc
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P(j) = 1 + γ(1− j/1728) .
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