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Motivation

m Modular symmetry has been successfully used as a guiding
principle to explain several puzzles in the SM:
m Fermion mass hierarchy,
= Flavor mixing,
m CP violation,

where a scalar (modulus) field, determines the Yukawa coupling.
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Motivation

m Modular symmetry has been successfully used as a guiding
principle to explain several puzzles in the SM:

m Fermion mass hierarchy,
= Flavor mixing,
m CP violation,

where a scalar (modulus) field, determines the Yukawa coupling.

m The vacuum of the modulus potential is important but dynamics
of modulus field is less so.

m The dynamics of modulus field can be used to realize inflation.

More on modular inflation: 1604.02995, 2208.10086, 2303.02947, 2405.08924
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Modular Symmetry I

Modular Group SL(2,Z)

Modular Forms

foyr) = (et +d)*f(r), v€T,

where the weight k is a generic non-negative integer.
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Modular Symmetry II:Fundamental domain
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Modular Symmetry III

The derivative of a weight k& modular form f satisfies:

F/om) = (e + )2 (7) + soccler + ) f(r), €T,

For a weight 0 modular form, it’s derivative is a weight 2 modular form.
There are 3 fixed points (under S or T or their combinations) in the
fundamental domain:

Derivatives of wight 0 modular form have to vanishes there.
i and w are natural candidates for vacuum!
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Modular Symmetry from String Theory

D =10 Superstring — Dialton S and other fields
Compactifycation ——  modulus fields: massless scalar fields with no potential
Mm =A 6 X M4

moduli stabilization: generate potential, positive mass and vev

Meg=T?xT?x T?
Kéhler modulus 7 and complex structure modulus

Modular group is the mapping class group of torus

D=4,N=1SUGRA — Modular invariant scalar potential for S and 7
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SuperGravity framework

In SUGRA, scalar potential is determined by Kéhler potential C and
superpotential W in a combined way:

G(r,7,8,8) =K(r,7,5,8) + In|W(r,9) |,
And the scalar potential reads:
V(r,S) = (K DoWDsW — 3W2)
= ¢9(GaGG; — 3)
where the covariant derivative is defined by DWW = 0, W + W(0,K)

and KB is the inverse of the Kihler metric I 0B = 86,05/6 The total
bosonic action:

M3 —
5= [day=g |"PR - 9K 50,005 - V(o)

W.B.Zhao (BCTP, Uni.Bonn)

Modular Stabilization and Inflation June 13th, SUSY24 8/16



Potential setup I

K(r,7,8,8) = K(S,S) - 3In(—i(t — 7)),

_ a3 SUSH(7T)
W(S,7) = Ay o0

m We assume dialton S is stabilized.
m 77 is the Dedekind eta function with a modular weight 1/2:

oo
7)(7') _ q1/24 H(l - qn)’ q= e27r7,7-’
n=1

m Under Modular transformation, they reads:
=3In[—i(r —7)] = =3In[—i(t — 7)] + 3In(cr + d) + 3In(cT + d).
W = €0 (er +d) 73w,

m G(7,7,5,5) and potential are modular invariant.
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Potential setup II

The most general form without singularity inside the fundamental
domain:

H(r) = (j(r) = 1728)"2j(r)"*P(j(r)), m,n €N,

where j is called Klein j invariant.
jlico) = +o00,  j(w)=0,  j(i)=1728 =123,

m,n determine vacua of the potential and we choose:

m m = 0,n > 2, slow roll from i (saddle point) to w (Minkowski
minimum) along the arc.

mm > 2,n > 2 we consider slow roll from ioo to the fixed point w
(Minkowski minimum) along the left boundary.

m m =n =0, slow roll from i (saddle point) to w (dS minimum)
along the arc (King, Wang, 2405.08924).
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Inflation in the Fundamental domain
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Modular symmetry + Reality of potential

stabilize the orthogonal direction of inflation!
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Full potential

We choose the following polynomial:
i )
PG(r) =1+ 4 (1 1728) o (1 )

and the full potential reads:

V(r) = As A(S,S) = 3)|H(r)|> + V(1,7
() = s (A 5) =P + V(1)
SS 1 SS 2
A(S,S):K ZT;;/FDSW:K |Q‘SQJ’;KSQ| |
. —(r —7)? { ~ 2
Vo= ) - 26|

1
i(r =73 n(r)|"?
In short, 3 parameter sets: (m,n), (3,7), A(S, S)

June 13th, SUSY24
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Modular Stabilization and Inflation
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Slow roll along the unit arc
m=0,n>2: 7=pe and 7 =i is the start point of inflation:
V>0 = A(SS) >3,

1/V\?
ey = 5 <V) <1 = modular symmetry,

"

W= <l = (B,7).
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Example: m =0, n =2, A =24.3091 and 8 = 0.126425,~v = 0.
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Slow roll along the unit arc
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(a) P(y) =1. (b) with . (c) with ~.
m Taylor expansion: V(¢) = Vo(1 — 3272, Coo?*),
m The simplest case, P(j) = 1 gives too small spectral index.
m The rest: » < 1075, o = —10~%.
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Slow roll in the left boundary

m >2,n>2: 7=Re(r) +ilm(7).
Accidental inflation: up-lifting of adjacent minimum leads to inflation.
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A narrow region for slow roll + ultra slow roll:
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Summary

m [t is interesting to combine modular symmetry with inflation.

m Modular symmetry is a strong constraint as well as a useful handle.
m Three parameter sets: A(S,S), (m,n), (3,7).

Two inflationary trajectories: Along the arc or left boundary.
Outlook:

m Maybe fine-tuned. A more natural way?
m Dynamics of dilaton field?

m Non-single field inflation?

m Post-inflation: preheating, reheating?
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Summary

m [t is interesting to combine modular symmetry with inflation.

m Modular symmetry is a strong constraint as well as a useful handle.
m Three parameter sets: A(S,S), (m,n), (3,7).

Two inflationary trajectories: Along the arc or left boundary.
Outlook:

m Maybe fine-tuned. A more natural way?
m Dynamics of dilaton field?

m Non-single field inflation?

m Post-inflation: preheating, reheating?

Thanks for your attention!
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Eisenstein series

The Eisenstein series G (7) of weight 2k for integer k£ > 1 is defined as:

Gou(T)= > (ni+ngr) %,
n1,n2€%L
n17n27$(070)

and the Fourier series of Eisenstein series read:

Gak(q) = 2¢(2k) (1 + ok ZUQk—l(i)qZ) ;
i=1

where the coefficients ¢y are given by

(2mi)2k —4k 2
k- DR~ Ba  C(1-28)
Here B, are the Bernoulli numbers, ((z) is the Riemann’s zeta function
and op(n) is the divisor sum function,

op(n) =y dv. (2)

din
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J 1nvariant

The Klein j-invariant function is a modular form of weight zero, defined
in terms of Dedekind eta function and Eisenstein series as follows:

L3S G 355 GA(r
i(r) = 12 HQi((T; =12 A4((7-)) . A(r) =n*(r),

For convenience, the g-expansion of j-function is given by

1
J(r) = 7444 = 4 196884q + 21493760¢> + 864299970¢°
q

+202458562564¢" + 333202640600¢° + 4252023300096¢°
+44656994071935¢7 + O(¢®) .
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Vacuum structure of the potential

The vacuum structure of this potential at T =i and at T=w =¢

i2m/3

has been extensively studied in 2212.03876, where they find the
following results based on the choice of (m,n):

If m = n = 0, then both fixed points can have a de Sitter (dS)
vacuum.

If m>1,n=0, then 7 = w is a dS minimum, while 7 =i is
Minkowski minimum.

Ifm=0,n>1,then T =1iis a conditional dS minimum, which
depends on the value of A(S,S). 7 = w is always a Minkowski
minimum.

Ifm=1,n>0o0rn=1,m > 0, the vacuum is unstable.

If m > 1,n > 1, then we always have Minkowski extrema in these
two fixed points.
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Slow roll along the unit arc
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Slow roll along the unit arc
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