SUPERSYMMETRIC BOUNDARY CONDITIONS FOR The END of Spacetime: Dynamical Cobordism in Ads/CFT

Jesús Huertas Instituto de Física Teórica (IFT), Madrid

SUSY24, 14 June 2024

Based on [JH, Uranga, 2306.07335]

IN THIS

THE CONCEPT OF BOUNDARIES IN QUANTUM GRAVITY

WHAT ORBIFOLDS ARE AND HOW THEY BREAK SUSY

ORBIFOLDS IN END OF THE WORLD BRANES

THE CONCEPT OF BOUNDARIES IN QUANTUM GRAVITY

COBORDISM CONJECTURE

[McNamara, Vafa, '19]

The cobordism classes of any solution of Quantum Gravity have to be trivial

• What is the solution that interpolates between $AdS_5 \times S^5$ and nothing?

• What is the solution that interpolates between $AdS_5 \times S^5$ and nothing?

[Horowitz, Orgera, Polchinski, '07]

• Bubbles of Nothing in $AdS_5 \times S^5$?

• What is the solution that interpolates between $AdS_5 \times S^5$ and nothing?

[Horowitz, Orgera, Polchinski, '07]
 Bubbles of Nothing in AdS₅ × S⁵?
 → They don't have an holographic dual [Ooguri, Vafa, '16]

- What is the solution that interpolates between $AdS_5 \times S^5$ and nothing?
- [Horowitz, Orgera, Polchinski, '07]
 Bubbles of Nothing in AdS₅ × S⁵?
 → They don't have an holographic dual [Ooguri, Vafa, '16]
- Supersymmetry preserving cobordism?

- What is the solution that interpolates between $AdS_5 \times S^5$ and nothing?
- [Horowitz, Orgera, Polchinski, '07] • Bubbles of Nothing in $AdS_5 \times S^5$? \rightarrow They don't have an holographic dual

[Ooguri, Vafa, '16]

- Supersymmetry preserving cobordism?
 - \rightarrow Our approach

 $ds^{2} = f_{4}^{2} ds_{AdS_{4}}^{2} + f_{1}^{2} ds_{\mathbf{S}_{1}^{2}}^{2} + f_{2}^{2} ds_{\mathbf{S}_{2}^{2}}^{2} + 4\rho^{2} (dr^{2} + r^{2} d\varphi^{2})$

WHAT ORBIFOLDS ARE AND HOW THEY Break Susy

 \mathbb{R}^2 \mathbf{Z}_2 $\Theta: (x, y) \to \left(e^{\frac{2\pi i}{k}}x, e^{-\frac{2\pi i}{k}}y\right) \qquad k = 2$

4D N=4

D3-branes in flat space The gravity dual is type IIB in $AdS_5 \times \mathbf{S}^5$

4D N=2 ORBIFOLDS

D3-branes in a $\mathbf{C}^2/\mathbf{Z}_k$ singularity. The gravity dual is type IIB in $\mathrm{AdS}_5 \times \mathbf{S}^5/\mathbf{Z}_k$

$$\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2) \qquad z_1 = x^4 + ix^3 \\ z_2 = x^7 + ix^8$$

 $D3 \quad 0 \quad 1 \quad 2 \quad 3 \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times$

1 5

D3 0 1 2 3 × × × × × × D3-branes in a $\mathbf{C}^2/\mathbf{Z}_k$ singularity. The gravity dual is type IIB in $\operatorname{AdS}_5 \times \mathbf{S}^5/\mathbf{Z}_k$ $z_1 = x^4 + ix^5$

$$\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2)$$

$$z_1 = x^4 + ix^5$$
$$z_2 = x^7 + ix^8$$
$$z_3 = x^6 + ix^9$$

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = R^2$$

D3 0 1 2 3 D3-branes in a $\mathbf{C}^2/\mathbf{Z}_k$ singularity. The gravity dual is type IIB in $\operatorname{AdS}_5 \times \mathbf{S}^5/\mathbf{Z}_k$

$$\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2)$$

$$3 \times x \times x \times x \times x$$
$$z_1 = x^4 + ix^5$$
$$z_2 = x^7 + ix^8$$
$$z_3 = x^6 + ix^9$$

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = R^2$$

 $z_1 = z_2 = 0, \ |z_3| = R$

D3-branes in a $\mathbf{C}^2/\mathbf{Z}_k$ singularity. $z_1 = x^4 + ix^5$ The gravity dual is type IIB in $AdS_5 \times S^5/Z_k$ $z_2 = x^7 + ix^8$ $\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2)$ $z_3 = x^6 + ix^9$ \mathbf{S}^5 $|z_1|^2 + |z_2|^2 + |z_3|^2 = R^2$ \mathbf{S}^{1} fixed points

$$z_1 = z_2 = 0, |z_3| = R$$

ORBIFOLDS IN END OF THE WORLD BRANES

ETW-BRANES FOR 4D N=2 ORBIFOLDS (Z_{K} ORBIFOLD)

$$\Theta: (z_1, z_2) \rightarrow (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2)$$

$$z_1 = x^4 + ix^5$$

 $z_2 = x^7 + ix^8$

ETW-BRANES FOR 4D N=2 ORBIFOLDS (Z_{K} ORBIFOLD)

$$\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2) \qquad z_1 = x^4 + ix^3 \\ z_2 = x^7 + ix^8$$

٢

ETW-BRANES FOR 4D N=2 ORBIFOLDS (Z_{K} ORBIFOLD)

$$\Theta: (z_1, z_2) \to (e^{\frac{2\pi i}{k}} z_1, e^{-\frac{2\pi i}{k}} z_2) \qquad z_1 = x^4 + ix^3 \\ z_2 = x^7 + ix^8$$

٢

4D N=3 S-FOLD

D3-branes on a $\mathbb{C}^4/\mathbb{Z}_4$ singularity The gravity dual is a F-theory fibration over $\mathrm{AdS}_5 \times \mathbb{S}^5/\mathbb{Z}_4$

$$\Theta : (x_4, x_5, x_6) \to (x_7, x_8, x_9) (x_7, x_8, x_9) \to (-x_4, -x_5, -x_6) \tau \to -1/\tau$$

 $D3 \quad 0 \quad 1 \quad 2 \quad 3 \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times$

4D N=3 S-FOLD

D3-branes on a $\mathbb{C}^4/\mathbb{Z}_4$ singularity The gravity dual is a F-theory fibration over $\mathrm{AdS}_5 \times \mathbb{S}^5/\mathbb{Z}_4$

$$\Theta: (x_4, x_5, x_6) \rightarrow (x_7, x_8, x_9) \\ (x_7, x_8, x_9) \rightarrow (-x_4, -x_5, -x_6) \\ \tau \rightarrow -1/\tau$$

$$D3 \quad 0 \quad 1 \quad 2 \quad 3 \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \mathsf{S}^5$$
Acts freely!

ETW BRANES FOR 4D N=3 S-FOLD

D3-branes on a $\mathbb{C}^4/\mathbb{Z}_4$ singularity The gravity dual is a F-theory fibration over $\mathrm{AdS}_5 \times \mathbb{S}^5/\mathbb{Z}_4$

$$\Theta : (x_4, x_5, x_6) \to (x_7, x_8, x_9) (x_7, x_8, x_9) \to (-x_4, -x_5, -x_6) \tau \to -1/\tau$$

ETW BRANES FOR 4D N=3 S-FOLD

D3-branes on a $\mathbb{C}^4/\mathbb{Z}_4$ singularity The gravity dual is a F-theory fibration over $\mathrm{AdS}_5 \times \mathbb{S}^5/\mathbb{Z}_4$

$$\Theta : (x_4, x_5, x_6) \to (x_7, x_8, x_9) (x_7, x_8, x_9) \to (-x_4, -x_5, -x_6) \tau \to -1/\tau$$

ETW BRANES FOR 4D N=3 S-FOLD

D3-branes on a $\mathbb{C}^4/\mathbb{Z}_4$ singularity The gravity dual is a F-theory fibration over $\mathrm{AdS}_5 \times \mathbb{S}^5/\mathbb{Z}_4$

$$\Theta : (x_4, x_5, x_6) \to (x_7, x_8, x_9) (x_7, x_8, x_9) \to (-x_4, -x_5, -x_6) \tau \to -1/\tau$$

Fixed point!!

CONCLUSIONS

SUMMARY

- Cobordism defect of $AdS_5 \times S^5 \parallel$
- 4d N=2 for ETW configurations
- 4d N=3 S-folds for ETW configuration with the discover of a novel fixed point

