ALPs vs. CP-odd Higgs bosons at the LHC

Georg Weiglein, DESY & UHH

based on work in collaboration with Afiq Anuar, Anke Biekötter, Thomas Biekötter, Alexander Grohsjean, Sven Heinemeyer, Laurids Jeppe, Christian Schwanenberger

SUSY 2024 Conference, Madrid, 06 / 2024

Introduction

Characteristic feature of LHC searches for an s-channel resonance in gluon fusion: large signal—background interference possible above the di-top threshold

Loop function $A^{\phi}(\tau)$

 \Rightarrow Interference contribution ~ Im[A^{ϕ}(τ)] m_{ϕ} Γ_{ϕ}

Interference patterns for background-subtracted cross section, parton level

[H. Bahl, R. Kumar, G. W. '22]

Sensitivity to BSM physics in di-top final states

H, A \rightarrow tt search in CMS

[CMS Collaboration '19]

 \Rightarrow Excess in CMS search, compatible with CP-odd Higgs at about 400 GeV

Excess (3 σ local) in CMS search at about 400 GeV

Good description of A \rightarrow tt excess at 400 GeV, simultaneously with excess at 95 GeV, in models with extended Higgs sectors (N2HDM, NMSSM) $_{7}$

⇒ The A → tt excess at 400 GeV and the CMS $\gamma\gamma$ and LEP excesses at about 95 GeV can be described very well simultaneously!

ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

8

New ATLAS result

[ATLAS Collaboration '24]

10 ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Sensitivity to the BSM nature of a possible signal

Is there sensitivity for distinguishing a CP-odd Higgs from an ALP?

Here: heavy axion-like particles at the LHC (not dark matter candidates)

Axion-like particles (ALPs):

- Strong CP problem: no observation of CP violation in QCD although it would be allowed from first principles
- Solved by axions BSM particles that exhibit U(1) shift symmetry
- In general: axion-like particles = particles with the same symmetry
 - Arise in many high-energy theories
 - Promising candidates for dark matter or dark matter mediators

 $\mathcal{L}_{QCD} \supset \theta \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$ CP-violating!
Obs.: $\theta < 10^{-10}$ \downarrow Promote to particle: $\theta \rightarrow a$ Absorb CP-violating term in $\mathcal{L}_{ax} = \frac{1}{2} (\partial_{\mu}a) (\partial^{\mu}a) + c_G \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + \dots$

[L. Jeppe '23]

Coupling to top quarks like for CP-odd Higgs, but additional effective coupling to gluons

- [*L. Jeppe '23]* ALP couplings: photons, EW bosons, gluons, massive fermions
- Produce at the LHC via gluon fusion
- If $m_a > 2m_t$: decay to top quarks \rightarrow interferes with SM final state:

Effective ALP Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \frac{m_a^2}{2} a^2 - \frac{a}{f_a} c_{\tilde{G}} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + ic_t \frac{a}{f_a} \left(\bar{q} Y_t \tilde{H} t_R + \text{h.c.} \right)$$
ALP couplings

ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

usual models: Yukawa-like ~ m_f

Background-subtracted cross section

[A. Anuar, A. Biekötter, T. Biekötter, A. Grohsjean, S. Heinemeyer, L. Jeppe, C. Schwanenberger, G. W. '24]

\Rightarrow Large interference effects

Generator-level analysis, 15% Gaussian smearing: comparison with CMS result

Impact of helicity variable chel:

⇒High discrimination power for c_{hel} > 0.6, good agreement with CMS analysis
ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Systematic uncertainties: impact of variation of top-quark mass by ± 1 GeV

Systematic uncertainties: impact of variation of top-quark mass by ± 1 GeV

⇒ Sensitivity of CMS analysis lies between the projections with and without the systematic uncertainty induced by mt

ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Reinterpretation of existing limits for the case $c_{\tilde{G}} = 0$

 \Rightarrow Constraints on | c_t |/ f_a

Expected sensitivity for an ALP ($c_{\tilde{G}} \neq 0$) and a CPodd Higgs boson with same total cross section

⇒High sensitivity for detecting a signal, good prospects for distinguishing ALP from CP-odd Higgs ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Significances for discriminating between an ALP and a CP-odd Higgs (mass: 400 GeV, width: 2.5%)

a		A	Significance $(a \text{ vs. } A)$			a vs. A)
$c_t/f_a [{\rm TeV}^{-1}]$	$c_{\tilde{G}}/f_a [\mathrm{TeV}^{-1}]$	$ g_{At\bar{t}} $	Luminosity	all syst.	no m_t	stats only
3.0	+0.015	0.95	Run 2	1.3	1.9	3.3
			Run $2+3$	1.8	2.3	4.9
			HL-LHC	5.3	5.7	> 10
3.0	-0.015	0.43	Run 2	1.2	1.9	3.3
			Run $2+3$	1.7	2.4	4.9
			HL-LHC	5.0	6.0	> 10
1.0	+0.025	0.75	Run 2	1.5	2.3	2.7
			Run $2+3$	2.0	3.1	3.9
			HL-LHC	5.8	8.8	> 10
1.0	-0.025	0.87	Run 2	3.7	9.0	> 10
			Run $2+3$	4.6	> 10	> 10
			HL-LHC	> 10	> 10	> 10

Projected expected limits on ALP couplings: without systematic uncertainty from m_t

Run 2, Run 2+3, HL-LHC:

⇒HL-LHC provides sensitivity for all studied benchmark points, some scenarios can already be probed with Run 2 data

Projected expected limits on ALP couplings: impact of systematic uncertainties

Run 2:

 \Rightarrow mt uncertainty has significant impact for m_a = 400 GeV (expected to be smaller in exp. analysis) Small effect for m_a = 800 GeV

20

Comparison with other experimental limits

Direct search limits for di-top final state yield stringent constraints, comparable or stronger than indirect limits from ALP-SMEFT interference ALPs vs. CP-odd Higgs bosons, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Conclusions

Production of a BSM particle in di-top final state: high discrimination power of spin correlations, top-mass uncertainty can be important

Expected sensitivity at Run 2, Run 2+3, HL-LHC: high sensitivity for a possible signal, good prospects for discrimination between CP-odd Higgs boson and axion-like particle

Projected limits: direct limits from searches in di-top final state are comparable or stronger than indirect limits and stronger than other direct limits

 \Rightarrow Looking forward to experimental analyses from ATLAS and CMS!

Higgs physics, current situation

Significances for detecting an ALP or CP-odd Higgs (mass: 400 GeV, width: 2.5%)

a		$A \mid$	Significance $(a/A \text{ vs. SM})$				
$c_t/f_a \left[\text{TeV}^{-1} \right]$	$c_{\tilde{G}}/f_a [\mathrm{TeV}^{-1}]$	$g_{At\bar{t}}$	Luminosity	all syst.	no m_t	stats only	
3.0	+0.015	0.95	Run 2	3.9/3.3	> 10/8.9	> 10/> 10	
			Run $2+3$	5.2/4.3	> 10/> 10	> 10/> 10	
			HL-LHC	> 10/> 10	> 10/> 10	> 10 /> 10	
3.0	-0.015	0.43	Run 2	2.1/1.2	2.2/1.5	4.4/2.9	
			Run $2+3$	3.0/1.5	3.0/2.0	6.5/4.3	
			HL-LHC	8.7/4.2	8.8/5.7	> 10 /> 10	
1.0	+0.025	0.75	Run 2	1.1/2.4	2.6/4.7	4.0/6.3	
			Run $2+3$	1.4/3.1	3.2/6.0	5.9/9.4	
			HL-LHC	3.9/8.4	8.2 > 10	> 10 / > 10	
1.0	-0.025	0.87	Run 2	0.7/2.8	1.7/6.9	2.8/9.8	
			Run $2+3$	0.9/3.6	2.2/8.6	4.1 > 10	
			HL-LHC	2.3/9.9	5.5 > 10	> 10/> 10	