

### Status of sub-GeV dark matter

### Tomás Gonzalo

Karlsruhe Institute for Technology

SUSY 2024, 10 June 2024

[S. Balan et al, arXiv:2405.17548]

### Dark Matter

- Plenty of evidence for DM from astrophysics (e.g bullet cluster) and cosmology (e.g CMB)
- If DM is a particle and if interacts then we should be able to detect it
- Most popular DM models are WIMPs
  - $\rightarrow\,$  EW-scale mass, accesible at colliders
  - $\rightarrow~$  Just right RD through freeze-out
  - $\rightarrow\,$  Form part of complete models (e.g. MSSM)



T. Gonzalo (KIT)

- No evidence of WIMPs
  - $\rightarrow$  Very strong contraints from experimental searches (e.g LZ)
  - $\rightarrow$  Many WIMP models in trouble, only survive in fine-tuned scenarios
- What if DM was not a WIMP?





### Sub-GeV DM

Most DD experiments threshold 1 GeV → sub-GeV DM avoids DD
Sub-GeV DM (scalar or fermion) with dark photon mediator

$$\begin{split} \mathcal{L}_{\Phi} &= |\partial_{\mu}\Phi|^2 - m_{\rm DM}^2 |\Phi|^2 + ig_{\rm DM}A'^{\mu} [\Phi^*(\partial_{\mu}\Phi) - (\partial_{\mu}\Phi^*)\Phi] - g_{\rm DM}^2 A'_{\mu}A'^{\mu} |\Phi|^2, \\ \mathcal{L}_{\psi} &= \bar{\psi}(i\partial \!\!\!/ - m_{\rm DM}\psi + g_{\rm DM}A'^{\mu}\bar{\psi}\gamma_{\mu}\psi. \end{split}$$

• Dark photon mixes with SM photon

$$\mathcal{L}_{A'} = -\frac{1}{2}m_{A'}^2 A'^{\mu}A'_{\mu} - \frac{1}{4}A'^{\mu\nu}A'_{\mu\nu} - \kappa e A'^{\mu}\sum_{f}q_{f}\bar{f}\gamma_{\mu}f$$

- We consider only  $m_{A'} \ge 2m_{\rm DM}$  so that  ${\rm BR}(\mathcal{A}' \to \chi \bar{\chi}) \sim 1$
- Strongly constrained annihilation cross section (CMB & X-rays)
  - $\rightarrow$  Resonant enhancement
  - $\rightarrow$  Particle-antiparticle asymmetry
  - $\rightarrow\,$  Underabundant DM

T. Gonzalo (KIT)

 $\eta_{\rm DM} = (n_{\xi} - n_{\bar{\chi}})/s$ 

 $\epsilon_R = (m_{A'}^2 - 4m_{\rm DM}^2)/(4m_{\rm DM}^2)$ 

 $f_{\rm DM} = \Omega_{\rm DM} / \Omega_{\rm DM,obs} < 1$ SUSY 2024, 10/6/24



### Resonant enhancement

- Resonant enhancement of ann at freezeout and suppression of ID
- Resonant parameter  $\epsilon_R = \frac{m_{A'}^2 4m_{\rm DM}^2}{4m_{\rm DM}^2}$
- The kinetic energy available in an ann process  $\epsilon = \frac{s-4m_{\rm DM}^2}{4m_{\rm DM}^2}$  which is around  $\epsilon \sim 0.1$  at freezeout and  $\epsilon \sim 10^{-6}$  in the MW
- In the non-relativistic limit,  $\epsilon = v_{\rm DM}^2$ , so the propagator of A' is

$$\frac{1}{(s - m_{A'}^2)^2 + m_{A'}^2 \Gamma_{A'}^2} = \frac{1}{16m_{\rm DM}^4 (\epsilon - \epsilon_R)^2 + m_{A'}^2 \Gamma_A^2}$$

- So a value of  $\epsilon_R \sim 0.1$  enhances ann at freeze-out but not today
- Optimal range  $\epsilon_R \in [10^{-3}, 0.3]$





# Constraints on sub-GeV DM

Direct Detection

• Constraints change a lot with respect to GeV-scale WIMPs



- $\rightarrow$  Nuclear (CRESSTIII)
- $\rightarrow \text{Migdal} (\text{DarkSide-50}, \\ \text{XENON1T, PandaX4T})$
- → Electron (XENON1T, SENSEI, DarkSide-50, PandaX4T, DAMIC, SuperCDMS)

SM SM Indirect Detection

Collider

- $\rightarrow$  X-rays (integral)
- $\rightarrow$  Bullet Cluster  $\sigma_0/m_{\rm DM} < 1.4 \ {\rm cm}^2 {\rm g}^{-1}$
- $\rightarrow$  CMB *E* injection
- $\rightarrow N_{\rm eff}$  at BBN
- $\rightarrow \text{ RD of asym DM}$   $\Omega_{\text{DM}}h^2 \leq 0.120 \pm 0.001$ Sub-GeV DM



- ightarrow Beam dumps: LSND, MiniBooNE  $\pi^0, \eta 
  ightarrow \gamma A'$
- $\rightarrow$  Fixed target: NA64  $e^-Z \rightarrow e^-ZA'$
- $\rightarrow$  Single- $\gamma$  search: BaBar  $e^+e^- \rightarrow \gamma A'$

T. Gonzalo (KIT)

SUSY 2024, 10/6/24 5/15



# Global fits of DM models

- Multitude of constraints
- Exclusion regions do not properly represent the model predictions
- Composite likelihood
- $\mathcal{L} = \mathcal{L}_{Direct} \mathcal{L}_{Indirect} \mathcal{L}_{Collider} \mathcal{L}_{Astro} \dots$



#### [arXiv:2012.09874 [hep-ph]]



- Multitude of parameters
- Hard to find interesting regions
- Random methods are inefficient
- Need smart sampling strategies (differential, nested, genetic,...)
- Rigorous statistical interpretations (frequentist / Bayesian)
- Parameter estimation, goodness-of-fit, model comparison, ...

T. Gonzalo (KIT)

### GAMBIT



### GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packa
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim



Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Beniwal, LL Braseth, T Bringmann, A Buckley, J Butterworth, JE Camargo-Molina, C Chang, J Cornell, M Danninger, A Fowlie, T Gonzalo, W Handley, S Hoof, A Jueid, F Kahlhoefer, A Kvellestad, M Lecroq, C Lin, M Lucente, FN Mahmoudi, DJE Marsh, G Martinez, H Pacey, MT Prim, T Proter, F Rajec, A Raklev, R Ruiz, A Staffidi, P Scott, W Shorrock, C Sierra, P Stöcker, W Su, J Van den Abeele, A Vincent, M White, A Woodocok, Y Zhang ++

70+ participants in many experiments and numerous major theory codes

- Global fits of BSM models: DM, ALPs, SUSY,  $\nu$ s, flavour, ...
- $\bullet$  Other applications: nuclear physics, COVID spread models,  $\ldots$

T. Gonzalo (KIT)

Sub-GeV DM



8/15

• Frequentist results





9/15

### Fermion asymmetric DM







• Bayesian results

T. Gonzalo (KIT)





# Scalar symmetric DM

### • Frequentist results



T. Gonzalo (KIT)

Sub-GeV DM



# Scalar symmetric DM

• Bayesian results



Sub-GeV DM



• Bayesian evidence

$$\mathcal{Z} = \int \mathcal{L}(\theta) \pi(\theta) d\theta \quad \rightarrow \quad \log \mathcal{Z} = -\langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathrm{KI}}$$

- Posterior-weighted log-likelihood
- Kullback-Leibler divergence

 $\langle \log \mathcal{L} \rangle_{\mathcal{P}} = \int \mathcal{P}(\theta) \log \mathcal{L}(\theta) d\theta$  $\mathcal{D}_{\mathrm{KL}} = \int \mathcal{P}(\theta) \log \frac{\mathcal{P}(\theta)}{\pi(\theta)} d\theta$ 



• 
$$\mathcal{Z}_{asym}/\mathcal{Z}_{sym} = 15.6$$

T. Gonzalo (KIT)

SUSY 2024, 10/6/24 13/15



### Benchmark points

• Past bechmark points are excluded by current constraints



• We propose new BP:  $m_{A'} = 5/2m_{\rm DM}, g_{\rm DM} = 1.94$ 





- $\bullet~{\rm GeV}{\operatorname{-scale}}$  WIMPs might not be the right answer  $\rightarrow$  sub-GeV DM
- There are many models of DM constrained by multitude of constraints from different sources
  - $\rightarrow\,$  Global studies the only way to give definitive status of models
- Fermionic DM survives either on the resonance  $m_{A'} \sim 2m_{\rm DM}$ , or in the case of maximum asymmetry  $\eta_{\rm DM}m_{\rm DM} \sim 4 \times 10^{-10}$ 
  - $\rightarrow\,$  Bayesian evidence prefers a symmetric case  $\mathcal{Z}_{\rm asym}/\mathcal{Z}_{\rm sym}=15.6$
- Scalar DM does not need either extreme resonance or asymmetry
   → No significant Bayesian preference for either
- Old benchmarks are (mostly) excluded with recent data
  - $\rightarrow\,$  New bechmarks can be discovered in the next gen of searches

$$m_{A'} = \frac{5}{2}m_{\rm DM}$$
 or  $\epsilon_R = \frac{9}{16}$ ,  $\alpha_{\rm DM} = 0.3$  or  $g_{\rm DM} = 1.94$ 

### Thanks!



### Backup



### Sub-GeV DM

### • Parameter ranges and priors

| Parameter name       | $\mathbf{Symbol}$ | $\mathbf{Unit}$ | Range                                    | Prior        |
|----------------------|-------------------|-----------------|------------------------------------------|--------------|
| Vinatia miring       | 10                |                 | [10-8 10-2]                              | logorithmia  |
| Kinetic mixing       | К                 | _               |                                          | logaritinnic |
| Dark sector coupling | $g_{\rm DM}$      | _               | $[10^{-2}, \sqrt{4\pi}]$                 | logarithmic  |
| Asymmetry parameter  | $\eta_{ m DM}$    | _               | $[0, 10^{-9}  \text{GeV}/m_{\text{DM}}]$ | linear       |
| Dark matter mass     | $m_{\rm DM}$      | MeV             | [1,1000]                                 | logarithmic  |
|                      |                   |                 |                                          |              |
| Dark photon mass     | $m_{A'}$          | MeV             | $[2,6000]$ with $m_{A'} \ge 2m_{\rm DM}$ | logarithmic  |
| or                   |                   |                 |                                          |              |
| Resonance parameter  | $\epsilon_R$      | -               | $[10^{-3},8]$                            | logarithmic  |



### Sub-GeV DM

### • Reproduction of the DD results (ER, NR and Migdal)





### Dark Matter





### Dark Matter

• Searches for DM in particle physics, astrophysics and cosmology





→ LZ, XENON1T, PandaX, LUX, CDMSlite, CRESST, PICO-60, DarkSide-50



- $\rightarrow$  DM annihilates into SM particles
- $\rightarrow \gamma$  rays,  $\nu$ s,  $\bar{p}$ , ...
- $\rightarrow$  Fermi-LAT, IceCube, AMS02
- $\rightarrow\,$  BBN and CMB
- $\rightarrow \Omega_{\rm DM} h^2 \leq 0.120 \pm 0.001$



- $\rightarrow$  LHC searches for large  $\not\!\!\!E_T$
- $\rightarrow \text{ Mediator searches} \\ (\text{e.g. } \Gamma_{H \rightarrow \text{inv}}, \\ \text{dijets})$

| T. Gonzalo (KII | Ľ |
|-----------------|---|
|-----------------|---|

Sub-GeV DM



### Higgs portal DM

• Scalar DM (S)

[GAMBIT, Eur.Phys.J.C 77 (2017) 8, 568]

$$\mathcal{L}_{S} = \frac{1}{2}\mu_{S}^{2}S^{2} + \frac{1}{2}\lambda_{hS}S^{2}|H|^{2} + \frac{1}{4}\lambda_{S}S^{4} + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S,$$

$$m_{S}^{2} = \mu_{S}^{2} + \frac{1}{2}\lambda_{hS}v^{2}$$
(S.Balan et al, arXiv:2303.07352 [hep-ph]]

- Vector DM  $(V_{\mu})$   $\mathcal{L}_{V} = -\frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}\mu_{V}^{2}V_{\mu}V^{\mu} - \frac{1}{4!}\lambda_{V}(V_{\mu}V^{\mu})^{2} + \frac{1}{2}\lambda_{hV}V_{\mu}V^{\mu}H^{\dagger}H$  $m_{V}^{2} = \mu_{V}^{2} + \frac{1}{2}\lambda_{hV}^{2}$
- Fermionic DM (Dirac,  $\psi$ )  $\mathcal{L}_{\psi} = \bar{\psi}(i\partial \!\!\!/ - m_{\psi})\psi - \frac{\lambda_{h\psi}}{\Lambda_{\psi}}(\cos\xi\bar{\psi}\psi + \sin\xi\bar{\psi}i\gamma_5\psi)(vh + \frac{1}{2}h^2)$
- Fermionic DM (Majorana,  $\chi$ ) [GAMBIT. Eur.Phys.J.C 79 (2019) 1, 38]  $\mathcal{L}_{\chi} = \frac{1}{2} \bar{\chi} (i \partial \!\!\!/ - m_{\chi}) \chi - \frac{1}{2} \frac{\lambda_{h\chi}}{\Lambda_{\chi}} (\cos \xi \bar{\chi} \chi + \sin \xi \bar{\chi} i \gamma_5 \chi) (vh + \frac{1}{2}h^2)$ T. Gonzalo (KIT) Sub-GeV DM SUSY 2024, 10/6/24 15/15



### Higgs portal DM

• Bosonic DM (scalar and vector)



Sub-GeV DM



# Higgs portal DM

• Majorana fermion DM ( $\approx$  Dirac DM)



T. Gonzalo (KIT)

Sub-GeV DM

SUSY 2024, 10/6/24 15/15



### Simplified DM models

• Singlet DM candidate plus vector mediator that couples to SM particles (quarks)

$${\cal L}_{
m V} = -rac{1}{4}F'_{\mu
u}F'^{\mu
u} - rac{1}{2}m_{
m M}{}^2V_{\mu}V^{\mu} + g_{
m q}V_{\mu}ar{q}\gamma^{\mu}q$$

- DM SM M DM SM
- DM can be a scalar  $(\phi)$ , a fermion  $(\psi \text{ or } \chi)$  or a vector  $(X_{\mu})$

[C.Chang et al, Eur.Phys.J.C 83 (2023) 3, 249]

$$\begin{split} \mathcal{L}_{\phi} &= \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m_{\mathrm{DM}}^{2} \phi^{\dagger} \phi + i g_{\mathrm{DM}}^{\mathrm{V}} V_{\mu} \left( \phi^{\dagger} (\partial^{\mu} \phi) - (\partial^{\mu} \phi^{\dagger}) \phi \right), \\ \mathcal{L}_{\chi} &= i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\mathrm{DM}} \bar{\chi} \chi + V_{\mu} \bar{\chi} (g_{\mathrm{DM}}^{\mathrm{V}} + g_{\mathrm{DM}}^{\mathrm{A}} \gamma^{5}) \gamma^{\mu} \chi, \\ \mathcal{L}_{\psi} &= \frac{1}{2} i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m_{\mathrm{DM}} \bar{\psi} \psi + \frac{1}{2} g_{\mathrm{DM}}^{\mathrm{A}} V_{\mu} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \end{split}$$

[C.Chang et al, arXiv:2303.08351 [hep-ph]]

$$\mathcal{L}_X = \frac{1}{2} X^{\dagger}_{\mu\nu} X^{\mu\nu} + m_{\rm DM}^2 X^{\dagger}_{\mu} X^{\mu} - ig_{\rm DM} \left( X^{\dagger}_{\nu} \partial_{\mu} X^{\nu} - (\partial_{\mu} X^{\dagger\nu}) X_{\nu} \right) V^{\mu}$$

T. Gonzalo (KIT)

SUSY 2024, 10/6/24 15/15



# Simplified DM models



T. Gonzalo (KIT)

Sub-GeV DM



### Simplified DM models



24 15/15

### DM EFT

[GAMBIT, Eur.Phys.J.C 81 (2021) 11, 992]

- Dirac fermionic DM  $\chi$ :  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{int} + \overline{\chi} (i\partial \!\!/ m_{\chi}) \chi$
- Effective interactions (quarks/gluons):  $\mathcal{L}_{int} = \sum_{a,d} \frac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_a^{(d)}$

$$\begin{split} \mathcal{Q}_{1}^{(5)} &= \frac{e}{8\pi^{2}} (\overline{\chi} \sigma_{\mu\nu} \chi) F^{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(5)} &= \frac{e}{8\pi^{2}} (\overline{\chi} i \sigma_{\mu\nu} \gamma_{5} \chi) F^{\mu\nu} \\ \mathcal{Q}_{1,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi) (\overline{q} \gamma^{\mu} q) \,, \\ \mathcal{Q}_{2,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{3,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{4,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi_{5} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{1}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\overline{\chi} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\overline{\chi} i \gamma_{5} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \end{split}$$

$$\begin{split} \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{8\pi}(\overline{\chi}\chi)G^{a\mu\nu}\widetilde{G}^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi}(\overline{\chi}i\gamma_{5}\chi)G^{a\mu\nu}\widetilde{G}^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{5,q}^{(7)} &= m_{q}(\overline{\chi}\chi)(\overline{q}q) \,, \\ \mathcal{Q}_{6,q}^{(7)} &= m_{q}(\overline{\chi}i\gamma_{5}\chi)(\overline{q}q) \,, \\ \mathcal{Q}_{7,q}^{(7)} &= m_{q}(\overline{\chi}\chi)(\overline{q}i\gamma_{5}q) \,, \\ \mathcal{Q}_{8,q}^{(7)} &= m_{q}(\overline{\chi}i\gamma_{5}\chi)(\overline{q}i\gamma_{5}q) \,, \\ \mathcal{Q}_{9,q}^{(7)} &= m_{q}(\overline{\chi}\sigma^{\mu\nu}\chi)(\overline{q}\sigma_{\mu\nu}q) \,, \\ \mathcal{Q}_{10,q}^{(7)} &= m_{q}(\overline{\chi}i\sigma^{\mu\nu}\gamma_{5}\chi)(\overline{q}\sigma_{\mu\nu}q) \,. \end{split}$$

### DM EFT





T. Gonzalo (KIT)

Sub-GeV DM

SUSY 2024, 10/6/24 15/15



### DM EFT

- Running and mixing
  - $\rightarrow$  For direct detection WCs are needed at  $\mu = 2$  GeV (DirectDM)
  - $\rightarrow$  For  $\Lambda > m_t(m_t)$ :

$$\mathcal{C}_{1,2}^{(5)} = -4 \frac{m_t(m_t)^2}{\Lambda^2} \log \frac{\Lambda^2}{m_t(m_t)^2} \, \mathcal{C}_{9,10}^{(7)}$$

$$\Delta C_i^{(7)} = -C_{i+4,q}^{(7)} \quad (i = 1, 2)$$
  
$$\Delta C_i^{(7)} = C_{i+4,q}^{(7)} \quad (i = 3, 4)$$

### • EFT validity, $\Lambda$ free parameter

- $\rightarrow~{\rm DD}$  requires  $\Lambda>2~{\rm GeV}$
- $\rightarrow$  Annihilation processes (ID/RD) require  $\Lambda > 2m_{\chi}$
- $\rightarrow$  Collider searches  $\Lambda > \not\!\!\! E_T$

$$\Lambda < \not\!\!\! E_T \quad \left\{ \begin{array}{c} \frac{\mathrm{d}\sigma}{\mathrm{d}\not\!\!\! E_T} = 0 \\ \\ \frac{\mathrm{d}\sigma}{\mathrm{d}\not\!\!\! E_T} \rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\not\!\!\! E_T} \left( \frac{\not\!\!\! E_T}{\Lambda} \right)^{-\sigma} \end{array} \right.$$



# Karlsruher Institut für Technologie

# Likelihoods

• Direct Detection

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = \frac{\rho}{m_T \, m_\chi} \int_{v_{\mathrm{min}}}^{\infty} v f(v) \frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}} \mathrm{d}^3 v$$

$$v_{\rm min}(E_{\rm R}) = \sqrt{\frac{m_T E_{\rm R}}{2\,\mu^2}}$$

 $\rightarrow$  Non-relativistic operators

$$\mathcal{L}_{\mathrm{NR}} = \sum_{i,N} c_i^N(q^2) \mathcal{O}_i^N \; ,$$



Indirect Detection

- $\rightarrow$  XENON1T, LUX 2016, PandaX 2016-17, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, and DarkSide-50
- $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v_{\rm rel} \rangle \left( n_{\chi} n_{\bar{\chi}} n_{\chi,\rm eq} n_{\bar{\chi},\rm eq} \right)$ • Relic abundance  $\rightarrow$  Planck 2018:  $\Omega_{\rm DM}h^2 < 0.120 \pm 0.001$

#### Sub-GeV DM

# Likelihoods

• Indirect detection with  $\gamma$ -rays  $\rightarrow \gamma$ -rays from DM annihilation in dSphs

 $\ln \mathcal{L}_{dwarfs}^{prof.} = \ln \mathcal{L}_{ki} \left( \Phi_i \cdot J_k \right) + \ln \mathcal{L}_J$ 

- $\rightarrow~\mathsf{Pass-8}$  combined of 15 dSphs from  $Fermi\text{-}\mathrm{LAT}$  data
- Indirect detection with  $\nu s$ 
  - → Solar capture of DM leads to very high energy  $\nu$ s > solar  $\nu$ s
  - $\rightarrow$  79-string IceCube search
- Indirect detection constraints from CMB
  - $\rightarrow\,$  Injected energy  $(\gamma,e^{\pm})$  changes reion history and optical depth  $\tau$
  - $\rightarrow~{\rm CMB}$  is sensitive to energy deposition efficiency  $f_{\rm eff}$  via combination

$$p_{\rm ann} = f_{\chi} f_{\rm eff} \frac{\langle \sigma u}{m_{\chi}}$$

#### SUSY 2024, 10/6/24 15/15





#### T. Gonzalo (KIT)

# Likelihoods

- Collider constraints
  - $\rightarrow~{\rm Many}$  signatures for DM searches

$$pp \to \chi \chi j \to j + E_T$$

- $\rightarrow \mathsf{MadGraph}_\mathsf{a}\mathsf{MC}@\mathsf{NLO} \rightsquigarrow \mathsf{Pythia}$
- $\rightarrow\,$  Interpolated grids for  $\sigma$  and  $\epsilon A$
- $\rightarrow$  Events per  $\not\!\!E_T$  bin (signal regions)

$$N = L \times \sigma \times (\epsilon A)$$

- $\rightarrow \text{ATLAS } 139 \text{fb}^{-1} \text{ mono-jet} \\ \sim \text{SR with best significance} \\ \sim \mathcal{L}_{\text{ATLAS}}(s_i) \equiv \mathcal{L}_{\text{ATLAS}}(s_i, \hat{\gamma}_i)$
- $\rightarrow$  Capped likelihood

 $\mathcal{L}_{\mathrm{cap}}(\mathbf{s}) = \min[\mathcal{L}_{\mathrm{LHC}}(\mathbf{s}), \mathcal{L}_{\mathrm{LHC}}(\mathbf{s}=\mathbf{0})]$ 

15/15





$$\rightarrow$$
 CMS 36fb<sup>-1</sup> mono-jet  
 $\rightarrow$  Profile over systematics

$$\ \, \rightarrow \ \, \mathcal{L}_{\rm CMS}(\mathbf{s}) \equiv \mathcal{L}_{\rm CMS}(\mathbf{s}, \hat{\hat{\gamma}})$$



# Scan framework

• Model parameters

| DM mass             | $m_{\chi}$            |
|---------------------|-----------------------|
| New physics scale   | Λ                     |
| Wilson coefficients | $\mathcal{C}_a^{(d)}$ |

### • Nuisance parameters

| Most probable speed<br>Galactic escape speed                                                                    | $ ho_0  onumber v_{ m peak}  onumber v_{ m esc}$ |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Running top mass ( $\overline{\text{MS}}$ scheme)                                                               | $m_t(m_t)$                                       |
| Pion-nucleon sigma term                                                                                         | $\sigma_{\pi N}$                                 |
| a second second with the second se | Δ                                                |
| s-quark contrib. to nucleon spin                                                                                | $\Delta s$                                       |
| <i>s</i> -quark contrib. to nucleon spin<br><i>s</i> -quark nuclear tensor charge                               | $\frac{\Delta s}{g_T^s}$                         |

• Needs smart sampling to efficiently scan over all parameters and explore interference effects among WCs

T. Gonzalo (KIT)



### Scan framework

### GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

- · Extensive model database, beyond SUSY
- · Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood pack
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHIP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, Darkages, DarkSUSY, DDCalc, DirectDM, Diver, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vexacious, WIMPSim



Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Benival, L Braseth, T Bringmann, A Buckley, J Butterworth, JE Camargo-Molina, C Chang, J Cornell, M Danninger, A Fowlie, T Gonzalo, W Handley, S Hoof, A Jueid, F Kahlhoefer, A Kvellestad, M Lercoq, C Lin, M Lucente, FN Mahmoudi, DIE Marsh, G Martinez, H Pacey, MT Prim, T Procter, F Rajec, A Rakker, R Niz, A Scaffidi, P Soctt, W Shorrock, C Sierra, P Stöcker, W Su, J Van den Abeele, A Vincent, M White, A Woodtock, V Zhang ++

70+ participants in many experiments and numerous major theory codes



### Scan framework



### Results



- Include dim-7 operators,  $\Omega_{\rm DM}h^2$  upper limit, LHC loglike *capped* 
  - $\rightarrow~{\rm No}$  change on large  $\Lambda$  small  $m_{\chi}$  region
  - $\rightarrow$  Neither  $\mathcal{Q}_{1-4}^{(7)}$  (LHC) nor  $\mathcal{Q}_{5-10,q}^{(7)}$  (suppressed) contribute to ann xsec
  - $\rightarrow\,$  However, RD can be saturated for  $m_\chi < 100$  GeV (and small  $\Lambda)$
  - $\rightarrow \mathcal{Q}_3^{(7)}$  and  $\mathcal{Q}_{7,q}^{(7)}$  give unconstrained signals in DD and ID
  - $\rightarrow\,$  Similar fits to LHC excesses, even when dim-6 ops are zero



• Combine all constraints into a **composite likelihood** 

$$\mathcal{L} = \mathcal{L}_{Collider} \mathcal{L}_{Higgs} \mathcal{L}_{DM} \mathcal{L}_{Flavour} \dots$$

- Perform an extensive **parameter scan** 
  - $\rightarrow$  Old-school sampling methods (random, grid) are inefficient
  - $\rightarrow$  Harder to make statement about statistics
  - $\rightarrow$  Need smart sampling strategies (differential, nested, genetic,...)
  - $\rightarrow$  **Rigorous** statistical interpretation (frequentist/Bayesian)
    - Goodness-of-fit
    - Parameter estimation
    - Model comparison





SUSY 2024, 10/6/24 15/15

# Modules (Bits)



- Physics Modules
  - $\rightarrow$  ColliderBit: collider searches
  - $\rightarrow$  **DarkBit**: relic density, dd,...
  - $\rightarrow$  FlavBit: flavour observables
  - $\rightarrow$  **SpecBit**: spectra, RGE running
  - $\rightarrow$  **DecayBit**: decay widths
  - $\rightarrow$  **PrecisionBit**: precision tests
  - $\rightarrow$  **NeutrinoBit**: neutrino likelihoods
  - $\rightarrow$  **CosmoBit**: cosmological constraints
- ScannerBit : stats and sampling
  - $\rightarrow$  Diver, GreAT, Multinest, Polychord, ...
- Models: hierarchical model database
- Core : dependency resolution
- **Backends** : External tools to calculate observables
- GUM: Autogeneration of code

T. Gonzalo (KIT)

Sub-GeV DM

[Eur.Phys.J. C77 (2017) no.11, 795]

- [Eur.Phys.J. C77 (2017) no.12, 831]
- [Eur.Phys.J. C77 (2017) no.11, 786]
  - [Eur.Phys.J. C78 (2018) no.1, 22]
  - [Eur.Phys.J. C78 (2018) no.1, 22]
  - [Eur.Phys.J. C78 (2018) no.1, 22]
  - [Eur.Phys.J.C 80 (2020) no.6, 569]
    - [JCAP 02 (2021) 022]

[Eur.Phys.J. C77 (2017) no.11, 761]

[Eur.Phys.J. C78 (2018) no.2, 98]

[S. Bloor, TG, P. Scott et. al., soon]

SUSY 2024, 10/6/24

15/15

### Examples





T. Gonzalo (KIT)

Sub-GeV DM

SUSY 2024, 10/6/24 15/15

### Examples





T. Gonzalo (KIT)

Sub-GeV DM

SUSY 2024, 10/6/24 15/15



### Core

- Each module contains a collection of module functions
- Module functions provide a *capability*
- They have dependencies and backend requirements
- Allowed for specific models

### // SM-like Higgs mass with theoretical uncertainties #define CAPABILITY prec\_mh START\_CAPABILITY

#define FUNCTION FH\_HiggsMass START\_FUNCTION(trtpletdouble>) DEPENDENCY(unipproved\_MSSM\_spectrum, Spectrum) DEPENDENCY(FH\_HiggsMasses, fh\_HiggsMassObs) ALLOW\_MODELS(MSSM63at0, MSSM63atMGUT) #undef\_FUNCTION

#define FUNCTION SND HiggsHass STAF\_FUNCTION(triplet-double>) DEPENDENT(Uninproved\_HSSM\_spectrum) BACKMD\_REG(SUMPUMHIGS), (Meal, (const MList-MReal>&)) BACKMD\_REG(SUMPUMHIGS), (const MList-MReal>&)) ALLOW\_FUNDELS(MSSM03FU, SSR03AFMAUT Aunder FUNCTION

#undef CAPABILITY

• At run time a dependency tree is generated and resolved



# Models



### • Extensive model database



- Parent-daughter hierarchy
- Module functions are activated for each model



### Backends



- C, Fortran  $\rightsquigarrow$  POSIX dl
- C++  $\rightsquigarrow BOSS + POSIX dl$

- Mathematica  $\rightsquigarrow$  WSTP
- Python  $\rightsquigarrow$  pybind11

| CosmoBit                                                                                                  | DarkBit                                                                                                   | ColliderBit                                                                      |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| AlterBBN 2.2<br>DarkAges 1.2.0<br>MontePythonLike 3.3.0<br>MultiModeCode 2.0.0<br>classy 2.9.4<br>plc 3.0 | CaptnGeneral 1.0<br>DDCalc 2.2.0<br>DarkSUSY 6.2.2<br>MicrOmegas 3.6.9.2<br>gamLike 1.0.1<br>nulike 1.0.9 | HiggsBounds 4.3.1<br>HiggsSignals 1.4<br>Pythia 8.212<br>nulike 1.0.9<br>FlavBit |
| PrecisionBit                                                                                              | SpecBit                                                                                                   | SuperISO 3.6                                                                     |
| FeynHiggs 2.12.0<br>SUSYHD 1.0.2<br>gm2calc 1.3.0                                                         | FlexibleSUSY 2.0.1<br>SPheno 4.0.3                                                                        | DecayBit<br>SUSY_HIT 1.5                                                         |



### An example run



T. Gonzalo (KIT)

SUSY 2024, 10/6/24 15/15

### Operators



|                                                                                                                      | SI scattering | SD scattering | Annihilations                          |
|----------------------------------------------------------------------------------------------------------------------|---------------|---------------|----------------------------------------|
| $\mathcal{Q}_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)$                             | unsuppressed  |               | s-wave                                 |
| $\mathcal{Q}_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q)$                   | suppressed    | _             | <i>p</i> -wave                         |
| $\mathcal{Q}_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$                   |               | suppressed    | s-wave                                 |
| $\mathcal{Q}_{4,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$         | _             | unsuppressed  | $s	ext{-wave} \propto m_q^2/m_\chi^2$  |
| $\mathcal{Q}_1^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi}\chi) G^{a\mu\nu} G^a_{\mu\nu}$                        | unsuppressed  | —             | <i>p</i> -wave                         |
| $\mathcal{Q}_2^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} G^a_{\mu\nu}$            | suppressed    | —             | s-wave                                 |
| $\mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}$       | —             | suppressed    | <i>p</i> -wave                         |
| $\mathcal{Q}_4^{(7)} = \frac{\alpha_s}{8\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}$ | —             | suppressed    | s-wave                                 |
| $\mathcal{Q}_{5,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}q)$                                                  | unsuppressed  | —             | $p\text{-wave} \propto m_q^2/m_\chi^2$ |
| $\mathcal{Q}_{6,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}q)$                                         | suppressed    | _             | s-wave $\propto m_q^2/m_\chi^2$        |
| $\mathcal{Q}_{7,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}i\gamma_5 q)$                                        | _             | suppressed    | $p\text{-wave} \propto m_q^2/m_\chi^2$ |
| $\mathcal{Q}_{8,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}i\gamma_5q)$                                | _             | suppressed    | s-wave $\propto m_q^2/m_\chi^2$        |
| $\mathcal{Q}_{9,q}^{(7)} = m_q (\overline{\chi} \sigma^{\mu\nu} \chi) (\overline{q} \sigma_{\mu\nu} q)$              | loop-induced  | unsuppressed  | s-wave $\propto m_q^2/m_\chi^2$        |
| $\mathcal{Q}_{10,q}^{(7)} = m_q (\overline{\chi} i \sigma^{\mu\nu} \gamma_5 \chi) (\overline{q} \sigma_{\mu\nu} q)$  | loop-induced  | suppressed    | s-wave $\propto m_q^2/m_\chi^2$        |
| T. Gonzalo (KIT)                                                                                                     | Sub-GeV DM    |               | SUSY 2024, 10/6/24                     |

15 / 15



### Hadronic input parameters

| Parameter                                                                                        | Value                        | Parameter        | Value                               |
|--------------------------------------------------------------------------------------------------|------------------------------|------------------|-------------------------------------|
| $\sigma_{\pi N}$                                                                                 | 50(15) MeV [1]               | $\mu_p$          | 2.793 -[2]                          |
| $Bc_5(m_d - m_u)$                                                                                | -0.51(8) MeV [3]             | $\mu_n$          | -1.913 [2]                          |
| $g_A$                                                                                            | 1.2756(13) [2]               | $\mu_s$          | -0.036(21) [4]                      |
| $m_G$                                                                                            | 836(17) MeV [1]              | $g_T^u$          | 0.784(30) [5]                       |
| $\sigma_s$                                                                                       | 52.9(7.0) MeV [6]            | $g_T^d$          | -0.204(15) [5]                      |
| $\Delta u + \Delta d$                                                                            | 0.440(44) [7]                | $g_T^s$          | $-27(16)\cdot 10^{-3}$ [5]          |
| $\Delta s$                                                                                       | -0.035(9) [7]                | $B_{T,10}^{u/p}$ | 3.0(1.5) [8]                        |
| $B_0 m_u$                                                                                        | $0.0058(5)~{ m GeV}^2$ [9]   | $B_{T,10}^{d/p}$ | 0.24(12) [8]                        |
| $B_0 m_d$                                                                                        | $0.0124(5) \ { m GeV}^2$ [9] | $B_{T,10}^{s/p}$ | 0.0(2) [8]                          |
| $B_0 m_s$                                                                                        | $0.249(9) \ { m GeV}^2$ [9]  | $r_s^2$          | $-0.115(35) \text{ GeV}^{-2}$ [4]   |
| [1][F. Bishara et. a                                                                             | al., JHEP 11 (2017) 059] [2  | 2][PDG 2020] [3] | [A. Crivellin et. al., Phys. Rev. D |
| 39 (2014) 054021] [4][D. Djukanovic et. al., Phys. Rev. Lett. 123 (2019) 212001, R. S. Sufian    |                              |                  |                                     |
| et. al, Phys. Rev                                                                                | . Lett. 118 (2017) 042001]   | [5][R. Gupta,    | et. al., Phys. Rev. D 98 (2018)     |
| 091501] [6][S. Aoki                                                                              | et. al., Eur. Phys. J. C     | 2 80 (2020) 113] | [7][J. Liang et. al., Phys. Rev. D  |
| 38 (2018) 074505] [8][B. Pasquini et. al., Phys. Rev. D72 (2005) 094029] [9][F. Bishara et. al., |                              |                  |                                     |
| arXiv:1708.02678.]                                                                               |                              |                  |                                     |

T. Gonzalo (KIT)



### Nuisance parameters

| Nuisance parameter                                |                     | Value $(\pm 3\sigma \operatorname{range})$ |
|---------------------------------------------------|---------------------|--------------------------------------------|
| Local DM density                                  | $ ho_0$             | $0.2 - 0.8  {\rm GeV}  {\rm cm}^{-3}$      |
| Most probable speed                               | $v_{\mathrm{peak}}$ | $240(24){\rm km}~{\rm s}^{-1}$             |
| Galactic escape speed                             | $v_{ m esc}$        | $528(75){\rm km}~{\rm s}^{-1}$             |
| Running top mass ( $\overline{\text{MS}}$ scheme) | $m_t(m_t)$          | $162.9(6.0){ m GeV}$                       |
| Pion-nucleon sigma term                           | $\sigma_{\pi N}$    | 50(45) MeV                                 |
| Strange quark contrib. to nucleon spin            | $\Delta s$          | -0.035(0.027)                              |
| Strange quark nuclear tensor charge               | $g_T^s$             | -0.027(0.048)                              |
| Strange quark charge radius of the proton         | $r_s^2$             | $-0.115(0.105) \text{ GeV}^{-2}$           |



• ATLAS, Poisson loglike marginalised over nuisance  $\xi$  = relative signal/bkg uncertainties

$$\begin{aligned} \mathcal{L}_{\mathrm{marg}}(n|p) &= \int_0^\infty \frac{[\xi p]^n \, e^{-\xi p}}{n!} \\ &\times \frac{1}{\sqrt{2\pi}\sigma_\xi} \frac{1}{\xi} \exp\left[-\frac{1}{2} \left(\frac{\ln\xi}{\sigma_\xi}\right)^2\right] \mathrm{d}\xi \,. \end{aligned}$$

• CMS, convolved Poisson-Gaussian, profiled over systematic uncertainties  $\gamma$  on expected background yields with covariance matrix  $\Sigma$ 

$$\mathcal{L}(\mathbf{s},\gamma) = \prod_{i}^{N_{\text{bin}}} \left[ \frac{(s_i + b_i + \gamma_i)^{n_i} e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \\ \times \frac{1}{\sqrt{\det 2\pi\Sigma}} e^{-\frac{1}{2}\gamma^{\mathbf{T}} \Sigma^{-1} \gamma}.$$

# Results

•  $\mathcal{C}_1^{(6)}$ 

- $\rightarrow$  spin-independent scattering
- $\rightarrow$  strongly constrained  $\rightsquigarrow$  very small

•  $C_2^{(6)}$ 

- $\rightarrow$  momentum-dependent scattering
- $\rightarrow~\Lambda < 250~{\rm GeV}$  DD constrained

 $\rightarrow \Lambda > 250 \text{ GeV LHC constrained}$ (6)

- $C_3^{(6)}$ 
  - $\rightarrow~both~{\rm SD}$  and MD scattering
  - $\rightarrow~\Lambda<250$  GeV weak DD constraints
  - $\rightarrow$  Main contribution to Fermi LAT
  - $\rightarrow~\Lambda>250~{\rm GeV}$  LHC constrained
- $C_4^{(6)}$ 
  - $\rightarrow$  spin-dependent scattering
  - $\rightarrow$  identical to  $\mathcal{C}_2^{(6)}$

#### Sub-GeV DM





### Results







### But...

How do I use GAMBIT with my favourite model? → Adding a model → Sorting out hierarchy → Making physics computations work with that model

How do I add a new physical observable or likelihood? ~> Create capabilities ~> Declare dependencies ~> and models ~> and backend requirements



 Write the function as a standard C++ function (one argument: the result)



15 / 15

SUSY 2024, 10/6/24

### Solution





### GUM



- GUM interfaces LLT SARAH and FeynRules with GAMBIT
- Uses existing HEP toolchains



• GAMBIT-compatible outputs from GUM

| Generated output         | FeynRules | SARAH | Usage in GAMBIT                     |
|--------------------------|-----------|-------|-------------------------------------|
| CalcHEP                  | 1         | 1     | Decays, cross-sections              |
| micrOMEGAs (via CalcHEP) | 1         | 1     | DM observables                      |
| Pythia (via MadGraph)    | 1         | ~     | Collider physics                    |
| SPheno                   | x         | 1     | Particle mass spectra, decay widths |
| Vevacious                | ×         | 1     | Vacuum stability                    |



• Primarily written in Python, with interface to Mathematica via Boost and WSTP



- Automatically generates GAMBIT code
  - $\rightarrow~{\rm Particles} \rightarrow {\rm particle}$  database and parameters  $\rightarrow~{\rm Models}$
  - $\rightarrow\,$  Module functions for ColliderBit, DarkBit, DecayBit and SpecBit
  - $\rightarrow\,$  Writes interfaces to requested backends
- GUM will release with GAMBIT 2.0 VERY SOON



### An example

• Majorana DM  $\chi$  with scalar mediator Y

