

Co-scattering in the Extended Singlet-Scalar Higgs Portal

Jayita Lahiri II. Institut für Theoretische Physik, Universität Hamburg

Based on Arxiv : 2404.19057 in collaboration with Bastián Díaz Sáez and Kilian Möhling

The origin of dark matter relic

- The origin of DM is not known.
- Thermal production of DM is one of the most popular hypotheses \rightarrow WIMP mechanism.
- $\bullet\,$ Freeze-out occurs when annihilation rate $\lesssim\,$ expansion rate of the universe.
- WIMP regime directs towards weak scale masses as well as interaction strengths, likely to be detected at collider experiments.
- Co-annihilation : Mutual annihilation of different species, 1, 2 charged under same symmetry, into SM bath particles. Effective when $m_2 m_1 \approx 5/10\%$ of DM mass. *Griest and Seckel, PRD 43, 3191 (1991)*

Conversion driven freezeout or co-scattering

• This is a thermal DM framework where inelastic conversion within the dark sector drives the relic abundance *Phys.Rev.Lett.* 119 (2017) 6, 061102 D'Agnolo et al. and *Phys.Rev.D* 96 (2017) 10, 103521 Garny et al.

Taken from D'Agnolo et al.

- Annihilation of DM into SM bath particles needs to be suppressed.
- CE within the dark sector is lost, conversion plays important role in DM freezeout.

Co-scattering in Higgs-portal scenario with additional scalar singlet

JHEP 05, (2017) 036 Casas et al

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \sum_{i=1,2} \left(\frac{1}{2} (\partial_{\mu} S_i)^2 - \frac{m_i^2}{2} S_i^2 - \lambda_{i4} S_i^4 \right) \\ &- \lambda_{22} S_1^2 S_2^2 - \lambda_{13} S_1 S_2^3 - \lambda_{31} S_1^3 S_2 \\ &- \left(\lambda_{H1} S_1^2 + \lambda_{H2} S_2^2 + \lambda_{12} S_1 S_2 \right) \left(|H|^2 - \frac{v_h^2}{2} \right), \end{split}$$

- $\lambda_{H1} \approx 0$,
- $\lambda_{H2} \sim 1$,
- $\lambda_{12} << 1$,
- $\lambda_{13,31,22} \lesssim 0.1$ will be discussed soon.
- Onshell two-body decays of $S_2 \to S_1 + X$ should be suppressed(?) D'Agnolo et al.

Conversion/Co-scattering processes in Higgsportal scenario with additional scalar singlet

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

5

The Boltzmann Equations

$$\begin{split} \frac{dY_1}{dx} &= \frac{1}{3H} \frac{ds}{dx} \bigg[\left\langle \sigma_{1100} v \right\rangle \left(Y_1^2 - Y_{1e}^2 \right) + \left\langle \sigma_{1200} v \right\rangle \left(Y_1 Y_2 - Y_{1e} Y_{2e} \right) \\ &+ \left\langle \sigma_{1112} v \right\rangle \left(Y_1^2 - Y_1 Y_2 \frac{Y_{1e}}{Y_{2e}} \right) + \left\langle \sigma_{1222} v \right\rangle \left(Y_1 Y_2 - Y_2^2 \frac{Y_{1e}}{Y_{2e}} \right) \\ &+ \left\langle \sigma_{1122} v \right\rangle \left(Y_1^2 - Y_2^2 \frac{Y_{1e}^2}{Y_{2e}^2} \right) + \frac{\Gamma_{1 \to 2}}{s} \left(Y_1 - Y_2 \frac{Y_{1e}}{Y_{2e}} \right) - \frac{\Gamma_2}{s} \left(Y_2 - Y_1 \frac{Y_{2e}}{Y_{1e}} \right) \bigg], \\ \frac{dY_2}{dx} &= \frac{1}{3H} \frac{ds}{dx} \bigg[\left\langle \sigma_{2200} v \right\rangle \left(Y_2^2 - Y_{2e}^2 \right) + \left\langle \sigma_{1200} v \right\rangle \left(Y_1 Y_2 - Y_{1e} Y_{2e} \right) \\ &- \left\langle \sigma_{1112} v \right\rangle \left(Y_1^2 - Y_1 Y_2 \frac{Y_{1e}}{Y_{2e}} \right) - \left\langle \sigma_{1222} v \right\rangle \left(Y_1 Y_2 - Y_2^2 \frac{Y_{1e}}{Y_{2e}} \right) \\ &- \left\langle \sigma_{1122} v \right\rangle \left(Y_1^2 - Y_2^2 \frac{Y_{1e}^2}{Y_{2e}^2} \right) - \frac{\Gamma_{1 \to 2}}{s} \left(Y_1 - Y_2 \frac{Y_{1e}}{Y_{2e}} \right) + \frac{\Gamma_2}{s} \left(Y_2 - Y_1 \frac{Y_{2e}}{Y_{1e}} \right) \bigg], \end{split}$$

We need to use the darkOmegaN function, instead of darkOmega of MicrOMEGAs. Alguero et al, SciPost Phys. 13 (2022) 124

Evolution of DM and mediator in simplest benchmark scenario

simplest benchmark scenario : $\lambda_{13,31,22} = 0$, $\lambda_{H1} = 0$

 $(m_1, m_2) = (500, 505) \text{ GeV}, (\lambda_{12}, \lambda_{H2}) = (2.6 \times 10^{-5}, 1)$

Various regimes

Figure: $m_1 = 500$ GeV, $\lambda_{H2} = 1$

blue:darkOmega, red:darkOmegaN, orange:darkOmegaN without coscattering.

Various regimes

Figure: $m_1 = 500$ GeV, $\lambda_{H2} = 1$

blue:darkOmega, red:darkOmegaN, orange:darkOmegaN without coscattering. • Region I : Coscattering regime

- : strong dependence on λ_{12} .
- Region II : Mediator freezeout regime: almost no dependence on λ₁₂, CE established.
- Region III : Co-annihilation regime : again dependence on λ_{12} .

Re-examining on-shell $S_2 \rightarrow S_1$ +Higgs decays

On-shell decays being rapid processes, can equilibriate S_2 and S_1 , rendering co-scattering ineffective. However we decided to reinvestigate.

 $m_1=500$ GeV, $\lambda_{12}=10^{-5}$, $\lambda_{H2}=1$

Re-examining on-shell $S_2 \rightarrow S_1$ +Higgs decays

On-shell decays being rapid processes, can equilibriate S_2 and S_1 , rendering co-scattering ineffective. However we decided to reinvestigate.

 $\begin{array}{ll} m_1 = 500 \; {\rm GeV}, \; \lambda_{12} = 10^{-5}, \; \lambda_{H2} = 1 \\ m_1, m_2) = (500, 630) \; {\rm GeV}, \; {\rm with} \; \lambda_{12} = 2 \times \\ 10^{-6} \; ({\rm dashed}) \; {\rm and} \; \lambda_{12} = 10^{-5} \; ({\rm solid}). \\ \\ \mbox{Co-scattering can determine relic density when,} \; \lambda_{12} \; {\rm is \; even \; smaller}. \\ \end{array}$

Effect of contact terms

Contact terms in principle can help maintain chemical equilibrium within the dark sector.

 $\Delta^{\Omega}_{1s} \equiv 1 - \frac{\Omega h^2(1 \text{ sector})}{\Omega h^2(2 \text{ sectors})}$ Alguero et al SciPost Phys. 13 (2022) 124

Figure: $(m_1, m_2) = (500, 505)$ GeV and $(\lambda_{H1}, \lambda_{12}, \lambda_{H2}) = (0, 2.6 \times 10^{-5}, 1)$

Effect of contact terms

Contact terms in principle can help maintain chemical equilibrium within the dark sector.

 $\Delta^{\Omega}_{1s} \equiv 1 - \frac{\Omega h^2(1 \text{ sector})}{\Omega h^2(2 \text{ sectors})}$ Alguero et al SciPost Phys. 13 (2022) 124

 $\label{eq:Figure: (m_1, m_2) = (500, 505) GeV and} \\ (\lambda_{H1}, \lambda_{12}, \lambda_{H2}) = (0, 2.6 \times 10^{-5}, 1) (blue), \\ (m_1, m_2) = (500, 510) GeV and \\ (\lambda_{H1}, \lambda_{12}, \lambda_{H2}) = (0, 3.2 \times 10^{-5}, 1) (purple) \\ \end{cases}$

<ロ><10</td>(ロ)(日)<

Direct detection

- The stable DM S_1 can be found in direct detection experiments.
- The limit on the λ_{H1} coupling from LZ experiment is $\lambda_{H1} \lesssim \sqrt{\frac{4\pi m_h^4 m_1^2 \sigma_{LZ}}{f_N^2 m_h^4}}$
- In the co-scattering regime, naturally direct detection bound is easily satisfied, since $\lambda_{H1} \approx 0$.
- One can ask, what is the upper limit on λ_{H1} , for being in co-scattering regime which can also account for the observed relic?
- Whether an interaction strength of such order can be detected in future DD experiments?

 $\Delta m = 1 \, {
m GeV}, \, \lambda_{H2} = 1, \, \lambda_{12} = \{ \, 3.86 imes 10^{-4}, 2.3 imes 10^{-5} \}$ for $m_1 = \{ 90, 500 \} \, {
m GeV}$

 $\Delta m = 1 \, {
m GeV}, \, \lambda_{H2} = 1, \, \lambda_{12} = \{ \, 3.86 \times 10^{-4}, 2.3 \times 10^{-5} \}$ for $m_1 = \{ 90, 500 \}$ GeV

- For 500 GeV $\lambda_{H1} \lesssim 10^{-2}$, accounts for substantial co-scattering, as well as observed relic and close to the current LZ bound, although currently allowed by it.
- Future DARWIN experiment is expected to provide further sensitivity.

Long-lived particles (LLP) signature

- The co-scattering regime corresponds to λ₁₂ << 1, Δm << m₁, m₂, making S₂ essentially long-lived.
- $pp \rightarrow h^* + X \rightarrow S_2 + S_2 + X$, S_2 decaying further.
- Estimating the life-time of S₂ in our model, and within the reach of current/future experiments.

 $\Delta m = 1, 5, 10, 20$ GeV, $\lambda_{H2} = 0.5, 1, \pi$

- Small Δm is favored by co-scattering, but leads to extremely large decay length, beyond reach of LHC displaced vertices search.
- Large λ_{H2} , enables significant co-scattering even with comparatively larger Δm , making it possible to probe at MATUSHLA experiment, or even LHC displaced vertices search. A D > A B > A B > A B >

э

- Co-scattering is an important 'alternate' mechanism for the production of thermal DM relic.
- In co-scattering regime, the chemical equilibrium within the dark sector is lost and independent solution of Boltzman Equations for all dark sector particles are necessary.
- The on-shell decay as well as self-interaction between dark sector particles can restore the CE, altering the co-scattering regime.
- Long-lived particles are a direct manifestation of co-scattering regime. Future experiments in this direction can probe such scenarios effectively.