Unveiling E₆SSM Leptoguarks at the LHC

Murad Ali

In collaboration with S. Khalil, S. Moretti, S. Munir, R. Nevzorov, A. Nikitenko, H. Waltari

Based on: JHEP 03 (2023) 117 (arXiv: 2302.02071)

ICTP-EAIFR

SUSY24 IFT Madrid

June 12, 2024

United Nations - ICTP - East African Institute Educational, Scientific and
for Fundamental Research Cultural Organization - under the auspices of UNESCO

Murad Ali (ICTP-EAIFR)

Unveiling E6SSM Exotic Colored Scalars

P

∃ ► < ∃ ►</p>

3 Summary and Conclusions

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2

• Consider a scalar S_1 -type, denoted by D henceforth, charged as (3, 1, -1/3) under the G_{SM} with interaction:

$$\mathcal{L} = \lambda \bar{Q}_L D \bar{\ell}_L + \lambda' \bar{t}_R D \bar{\tau}_R \,, \tag{1}$$

LO partonic cross sections are give by:

$$\sigma(gg o D\overline{D}) = rac{lpha_s^2 \pi}{96\hat{s}} \left[eta(41 - 31eta^2) + (18eta^2 - eta^4 - 17)\lograc{1+eta}{1-eta}
ight],$$
 $\sigma(qar{q} o D\overline{D}) = rac{2lpha_s^2 \pi}{27\hat{s}}eta^3.$

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2

, deference of the second seco	9 000000000				
m _D (GeV)	$\sigma_{\rm LO}~({\rm fb})$	$\sigma_{ m NLO}$ (fb)			
1000	3.22	5.73			
1100	1.57	2.86	Decay Mode	Mass Limit [GeV]	Experiment
1200	0.79	1.50	tīra	900	CMS
1300	0.42	0.79		1400	ATLAS
1400	0.22	0.44	theu	950	
1500	0.12	0.25	1010	1220	ATLAS
1600	0.070	0.146	CMS: arXiv	/:1803.02864,	2012.0417

Table: Computed with MADGRAPH5v3.2.0 and PROSPINO v2.1

ATLAS:arXiv:2101.11582,2108.07665

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2: Event Selection Strategy

- We propose to complement the ATLAS and CMS probes of the $t\bar{t}\tau\bar{\tau}$ intermediate state with the fully hadronic topology.
- Background: $t\bar{t}jj$, $t\bar{t}b\bar{b}$, $t\bar{t}Z(\rightarrow \tau\tau)$, $t\bar{t}W(\rightarrow jj)$, $Z(\rightarrow \tau\tau) + 6j$, and $W(\rightarrow jj) + 6j$.
- Select events with two τ_h and at least six jets.
- Forced τ to decay hadronically, i.e, $\tau^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$.
- Kinematics selection for jets: $\Delta R(jj) > 0.4$, $p_T^j > 20$ GeV, and $|\eta^j| < 2.4$.

-

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2: Event Selection Strategy

- Tagging efficiencies and Fake rates:
 - $\varepsilon_{1(2)}^{\tau} = 0.7(0.5)$ with $p_T^{\tau} > 100 \text{ GeV}$ (< 100 GeV), and
 - $\varepsilon_{ au-fake} = \mathbf{3} \times \mathbf{10^{-3}}.$
 - $\varepsilon_b = 0.8$, and $\varepsilon_{b-fake} = 10^{-2}$.
 - 15% di-τ mass resolution for the Z and Higgs bosons, i.e., 14 GeV and 19 GeV, respectively.

• Exploit the difference between the $m_{\tau\tau}$ and m_{jj} .

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2: Event Selection Strategy

- Events must contain eight jets with $m_{jj} > 200 \text{ GeV}$.
- For the efficiency of the di-jet mass selection:
 - For Signal: use the generator-level τ_h .
 - For $t\bar{t}jj$: parton jets with $p_T > 40$ GeV and $|\eta| < 2.4$, and 100% events with correct *j*-to-*t* association¹.

Process	σ [fb]	bb-tagging	$ au au ext{-tagging}$	$m_{\tau\tau} > 200 \mathrm{GeV}$	$\sigma^{ m sel}[{ m fb}]$
Signal	0.5(5.73)	p_b^2	$(p_1^{\tau})^2$	0.97	0.15(1.74)
$t\bar{t}jj$	275×10^3	p_b^2	$(p_{\tau-\text{fake}})^2$	0.45	0.71
$t\bar{t}Z$	$950 \times \mathrm{BR}(Z \to \tau \tau)$	p_b^2	$(p_{2}^{\tau})^{2}$	$< 5.7 \times 10^{-7}$	$< 2.6 \times 10^{-6}$
$t\bar{t}W$	$770 \times BR(W \to qq')$	p_b^2	$(p_{\tau-\text{fake}})^2$		$< 3.1 \times 10^{-3}$
$t\bar{t}H$	32	p_b^2	$(p_{2}^{\tau})^{2}$	6.3×10^{-5}	3.2×10^{-4}
Z + 6j	50	$C_6^2 p_{b-\text{fake}}^2 (1 - p_{b-\text{fake}})^4$	$(p_{2}^{\tau})^{2}$	$< 5.7 \times 10^{-7}$	$< 1.0 \times 10^{-8}$
W + 6j	$600 \times \mathrm{R}_{\mu\nu}^{\mathrm{qq'}}$	$C_8^2 p_{b-fake}^2 (1 - p_{b-fake})^6$	$(p_{\tau-\text{fake}})^2$		$< 1.0 \times 10^{-4}$

1. arXive : 1909.05306

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2: Event Selection Strategy

Further suppression of the *t̄tjj* → Full reconstruction of the *D* mass.

5 [pb]/ 20 GeV

0.4

- For the background $(t\bar{t}jj) \rightarrow 0.06$
- For the signal $\longrightarrow 0.95$
- 1. arXive : 1812.10534

5 [pb]/ 20 GeV

0.5

nn⊸tŤi

3rd Generation Scalar LQs and fully hadronic $t\bar{t}\tau\tau$ final state at the LHC Run 2: Results and Expected Significance

- Signal and Background Cross Sections:
 - Signal $\longrightarrow 0.14 (1.65)$ fb
 - Background $\longrightarrow 0.04$ fb
- Expected Events:
 - Signal → 20 (231)
 - Background $\longrightarrow 6$
- Signal Significance:
 - 5.2 (> 5) computed with $(2(\sqrt{S+B}-\sqrt{B}))^1$

1.physics/9811025

- Provide an elegant solution to the μ problem: Forbids $\mu \hat{H}_d \hat{H}_u$, Allows $\lambda \hat{S} \hat{H}_d \hat{H}_u$, and therefore $\mu \equiv \mu_{eff} = \lambda < S >$.
- Allows the light Higgs mass to be as heavy as 125 GeV.
- Allows unification of the gauge coupling to within 2 S.D.
- Predict a new Z' boson, exotic colored objects, exotic objects and sterile right-handed neutrino.

Figure: taken from hep-ph/0510419

• The E₆SSM is an E₆ inspired model with an extra gauged *U*(1) symmetry. The symmetry breaking pattern is:

 $E_{6} \xrightarrow{M_{\text{GUT}}} SO(10) \times U(1)_{\psi} \xrightarrow{M_{\text{GUT}}} SU(5) \times U(1)_{\psi} \times U(1)_{\chi} \xrightarrow{M_{\text{GUT}}} G_{SM} \times U(1)_{N}$

Where $U(1)_N$ is defined as: $U(1)_N = \frac{1}{4}U(1)_{\chi} + \frac{\sqrt{15}}{4}U(1)_{\psi}$ • Low energ gauge invariant superpotential:

• Low energy matter content of the E6SSM:

 $3[(Q_i, u_i^c, d_i^c, e_i^c, L_i, N_i^c)] + 3(S_i) + 3(H_u) + 3(H_d) + 3(D_i, \bar{D}_i)$

Particles	Z_2^M	Z_2^L	Z_2^B	Z_2^H			
$S_{lpha}, H_{dlpha}, H_{ulpha}$	+	+	+	-			
S_3, H_{d3}, H_{u3}	+	+	+	+			
$Q_{L_i}, D^c_{R_i}, U^c_{R_i}$	-	+	+	-			
$L_{L_i}, E^c_{R_i}, N^c_i$	-	—	-	-			
\bar{D}_i, D_i	+	+	-	—			
$W = W_0 + W_2$ (E ₆ SSM-LQ)							

• Imposing Z_2^B

• The mass matrix for exotic squarks:

$$M^{2}(i) = \begin{pmatrix} M_{11}^{2}(i) + \Delta_{11}(i) & \mu_{D_{i}}X_{D_{i}} + \Delta_{12}(i) \\ \mu_{D_{i}}X_{D_{i}} + \Delta_{12}(i) & M_{22}^{2}(i) + \Delta_{22}(i) \end{pmatrix},$$

with $M_{11}^{2}(i) = m_{D_{i}}^{2} + \mu_{D_{i}}^{2} + \Delta_{D}, \quad M_{22}^{2}(i) = m_{\overline{D}_{i}}^{2} + \mu_{D_{i}}^{2} + \Delta_{\overline{D}},$
 $X_{D_{i}} = A_{\kappa_{i}} - \frac{\lambda}{\sqrt{2}\varphi}v_{1}v_{2}, \quad \text{and} \quad \Delta_{\phi} = \frac{g_{1}^{\prime 2}}{2} \Big(\tilde{Q}_{\overline{D}}v_{1}^{2} + \tilde{Q}_{D}v_{2}^{2} + \tilde{Q}_{\Phi}\varphi^{2}\Big)\tilde{Q}_{\phi},$

• The mass of the $D(S_1-type LQ)$:

$$m_{S_1}^2 = \frac{1}{2} \left[M_{11}^2(1) + \Delta_{11}(1) + M_{22}^2(1) + \Delta_{22}(1) - \sqrt{\left(M_{11}^2(1) + \Delta_{11}(1) - M_{22}^2(1) - \Delta_{22}(1) \right)^2 + 4 \left(\mu_{D_1} X_{D_1} + \Delta_{12}(1) \right)^2} \right].$$

 SARAH v4.14.4, SPHENO v4.0.5: Model interpretation and performing phenomenological studies

Black line (ATLAS), Green line (CMS), Blue line (E₆SSM)

Unveiling E6SSM Exotic Colored Scalars

- LQs, being coloured, can be produced efficiently at the LHC, and are thus among the potential signatures of BSM physics.
- We have studied the possibility of searching third-generation LQs decaying to $t\tau$ in the fully hadronic channel.
- This analysis complements existing semi-leptonic searches, offering larger statistics and the ability to reconstruct LQ mass.
- In the fully hadronic channel, we expect significant QCD backgrounds, but with proper event selection, the *tt̃jj* background becomes manageable, and other backgrounds are negligible.

- We discussed a variant of the E₆SSM where the fundamental representation includes scalar and fermion LQs. This model shows a high sensitivity in Run 2 data, with an expected LQ mass exclusion limit of up to 1580 GeV (assuming $BR(S_1 \rightarrow t\tau) = 1$), surpassing the ATLAS semi-leptonic channel result by about 150 GeV.
- Our current research explores the LHC investigation of a pair scalar diquarks and the new physics impact on muon g-2 within the scalar and fermionic sectors of the E6SSM.

Murad Ali (ICTP-EAIFR)

Unveiling E6SSM Exotic Colored Scalars

June 12, 2024

2

< D > < B > < E > < E >

クペペ 17/17 17/17