Anders Kvellestad, University of Oslo *On behalf of the GAMBIT Collaboration*

SUSY 2024 — Madrid, June 11, 2024

New GAMBIT fits of the MSSM electroweakino sector

As a community we can **learn far more physics** from an experimental result that is **reinterpretable** compared to one that is not.

What we have learned at time of publication

Anders Kvellestad 3

What we have learned long after publication

Impossible to reinterpret

Understanding the full implications of [experimental] searches requires the interpretation of the experimental results in the context *of many more theoretical models than are currently explored at the time of publication.*

HEP Software Foundation [arxiv:1712.06982]

See also:

• Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2

- *Publishing statistical models: Getting the most out of particle physics experiments* **[arxiv:2109.04981]**
- **[arxiv:2003.07868]**
- *• Simple and statistically sound strategies for analysing physical theories* **[arxiv:2012.09874]**

A **huge thank you** to everyone who works hard to produce some cutflow, a SimpleAnalysis code snippet, an efficiency map, a JSON likelihood file,

…

Anders Kvellestad 5

GAMBIT: The Global And Modular BSM Inference Tool EPJC 77 (2017) 784 arXiv:1705.07908

gambit.hepforge.org

github.com/GambitBSM

- Extensive model database, beyond SUSY
- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS,

Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Beniwal, S Bloor, LL Braseth, T Bringmann, A Buckley, J CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON Butterworth, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edsjö, T Emken, A Fowlie, T Authors of: BubbleProfiler, Capt'n General, Contur, Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, M Lecroq, P Jackson, D Jacob, C Lin, FN Mahmoudi, G Martinez, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, H Pacey, MT Prim, T Procter, F Rajec, A Raklev, JJ Renk, R Ruiz, A HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Scaffidi, P Scott, N Serra, P Stöcker, W. Su, J Van den Abeele, A Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, Vincent, C Weniger, A Woodcock, M White, Y Zhang ++ WIMPSim

80+ participants in many experiments and numerous major theory codes

EW-MSSM: 1809.02097

Vector and fermion Higgs portal DM:
1999,19465 sfermion soft-mass parameter *m*² small fraction of the DM relic abundance is explained 1808.10465 We now see that relaxing the relic density con-

 $-0.04\!-\!0.02$ 0.00 0.02 0.04 0.06 0.08

 $Re(\Delta C_7)$

Scalar Higgs portal DM: 1705.07931 **Scalar Higgs portal DM w/ vac.**

stability: 1806.11281

EW-MSSM: 1809.02097 **Axion-like particles:** 1810.07192 **Right-handed neutrinos:** 1908.02302

Flavour EFT: 2006.03489 **More axion-like particles:** 2007.05517 **Neutrinos and cosmo:** 2009.03287 **Dark matter EFTs:** 2106.02056

Cosmo ALPs: 2205.13549 **Simplified DM, scalar/fermion:** 2209.13266

Simplified DM, vector: 2303.08351 **EW-MSSM w/ light gravitino:**

2303.09082

Plus new results on sub-GeV DM! See slides from Tomas Gonzalo's talk

Simulation-based EWino fits with GAMBIT

Anders Kvellestad 8

Question: What are the 13 TeV collider constraints on the chargino/neutralino sector of the MSSM? $(MSSM \neq$ simplified model)

Method:

— Scan 4D EWino parameter space w/ adaptive sampler

-
- *At every point:* Run MC simulations of 13 TeV searches
	- Calculate joint likelihood function for all searches
- Produce profile likelihood plots

-
-

Main challenges:

— Computational cost

— Reproduce ATLAS/CMS searches w/ sufficient accuracy

- For **each parameter point** in a scan:
	- Run **Pythia simulations** of all relevant SUSY processes
	- Pass events through **fast detector simulation** (four-vector smearing + efficiencies)
	- Pass events through **our implementations of ATLAS and CMS searches**
		- \cdot \rightarrow signal predictions for all SRs
	- Compute **a combined likelihood** for the parameter point
		- We combine as many analyses and SRs as we reasonably can, given available info
	- Plus an analogous pipeline for measurements, using Rivet + Contur

ColliderBit

EWMSSM

- **MSSM** w/ neutralinos and charginos within LHC reach
- **6 SUSY particles below 1.5 TeV**: 4 neutralinos, 2 charginos
- **4D theory parameter space**: M1, M2, mu, tan beta

Two models: EWMSSM and G-EWMSSM

G-EWMSSM

- **EWMSSM + near-massless gravitino** (1eV gravitino, for prompt decays)
- **7 SUSY particles below 1.5 TeV**: 4 neutralinos, 2 charginos, 1 gravitino
- Same 4D parameter space, quite different collider pheno

Back in 2019: EWMSSM

Identified a possible explanation for a pattern of (at the time interesting) excesses across multiple ATLAS searches

Comparing to SM rather than to the best-fit point: Found that no point in the chargino-neutralino mass plane was conclusively ruled out at that time

[1809.02097] - 12 ATLAS/CMS searches - LEP cross-section limits

2023: G-EWMSSM

Scenario with light higgsinos \rightarrow Z/H + gravitino could partly fit small excesses in searches for leptons + MET and b-jets + MET

Comparing to SM rather than to the best-fit point: Strong constraints, but several scenarios survive

[2303.09082] - 27 ATLAS/CMS searches - Many «SM measurements» - LEP cross-section limits

2023: G-EWMSSM

Profile likelihoods can be complicated: Neighbouring points in e.g. a mass plane can belong to very different theoretical scenarios

[2303.09082] - 27 ATLAS/CMS searches

-
- Many «SM measurements»
- LEP cross-section limits

Ongoing work: **EWMSSM and G-EWMSSM after Run 2**

EWMSSM: Preliminary

EWMSSM: Preliminary

G-EWMSSM: Preliminary

G-EWMSSM: Preliminary

- 34 ATLAS/CMS searches - LEP cross-section limits - TODO: SM measurements

Compared to 2023 G-EWMSSM study:

G-EWMSSM: Preliminary

- 34 ATLAS/CMS searches - LEP cross-section limits - TODO: SM measurements

Compared to 2023 G-EWMSSM study: Stronger constraints on higgsino and wino NLSP scenarios

G-EWMSSM: Preliminary

Lowest-mass non-excluded higgsino scenarios violate the common simplified model assumption that $N2/C1$ always decay to $N1 +$ soft stuff

G-EWMSSM: Preliminary

...and these scenarions are higgino-bino mixture scenarios (M1 \sim mu)

Summary

- *To what extent is [your favourite model] constrained by the LHC? Can [your favourite model] really explain some pattern of excesses?*
- We need **high-detail reinterpretation studies**, based on **combined likelihoods** for all relevant searches/measurements
- Reinterpretation is how we **maximise the scientific impact of experimental results**
- With **GAMBIT** we are currently performing large, simulation-based global fits of the EWino sector
- New results (and associated code release) coming soon

Bonus tracks

Included searches

Reminder: **Theory space is a strange, implausible place**

[hep-ph/9709356]

- **•** «Everyone» would assign **negligible prior belief** to **almost all points** in the **low-scale MSSM parameter space**
- MSSM expresses our ignorance of SUSY breaking
- Any «elegant»/«economic»/«reasonable» high-scale model maps to some tiny subspace of the low-scale MSSM
- And any simplified model plane maps to some strange hypersurface through low-scale MSSM
- A «large» exclusion in simplified model space:
	- **Maybe large**, **maybe small** impact on MSSM
- A «large» exclusion in low-scale MSSM
	- **Maybe decisive**, **maybe negligible** impact on the space of plausible high-scale models

- For **each parameter point** in a scan:
	- Run **Pythia simulations** of all relevant SUSY processes
	- Pass events through **fast detector simulation** (four-vector smearing + efficiencies)
	- Pass events through **our implementations of ATLAS and CMS searches**
		- \cdot \rightarrow signal predictions for all SRs
	- Compute **a combined likelihood** for the parameter point
		- We combine as many analyses and SRs as we reasonably can, given available info
	- Plus an analogous pipeline for measurements, using Rivet + Contur

What we do in ColliderBit

Archive of full likelihoods in the HistFactory JSON format.Likelihoods are provided for the 3L onshell and offshell analyses. The background information is contained in the 'bkg_' files. A set of patches for various signal models is provided in the files ending in 'patchset.json'. A README is

Additional

 ∇ filter

ommon R

README and **Contents**

Fig 4 Onshel **Validation R**

Fig 8 Offshel Validation Re

Tab 12 Onsh **Region Yields**

Region Yields

Region Yields

Tab 13 Onshell Wh Signal

Fig 10 Onshell WZ Signal

Fig 11 Onshell Wh Signal

 $\overline{\mathbf{2}}$

 $\overline{2}$

 $\overline{\mathbf{2}}$

Region Yields Table

• Implementing the analysis:

- Clear analysis description in the paper
- SimpleAnalysis code snippets
- Reusable NNs?

• Validating our implementation:

- Cutflows for benchmark points
	- Clear definition of signal model (SLHA file)
	- Any preselections not mentioned in cutflow?
	- How many MC events generated?

• Fully utilising the data (and improving stability):

- Full likelihoods, JSON (ATLAS)
- Correlation matrices for simplified likelihoods (CMS)

The information we need

10.17182/hepdata.95751.v2/r4

Download

EW SUSY w/ light gravitino at the LHC

Usual ATLAS/CMS simplified model:

- Production of lightest neutralinos/charginos
- 1-2 fixed branching ratios
- Near massless gravitino as LSP

Parame 2 (*Â*⁰) *r spac* 2 **Parameter space** (*Â*⁰) $Space$ 2.1 Model definition **Parameter space**

where the contract of the cont **Neutralinos**

$$
\psi^0 = (\tilde{B}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0)
$$

$$
M_N = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g'v_{\mathcal{C}\beta} & \frac{1}{2}g'v_{\mathcal{S}\beta} \\ 0 & M_2 & \frac{1}{2}gv_{\mathcal{C}\beta} & -\frac{1}{2}gv_{\mathcal{S}\beta} \\ -\frac{1}{2}g'v_{\mathcal{C}\beta} & \frac{1}{2}gv_{\mathcal{S}\beta} & 0 & -\mu \\ \frac{1}{2}g'v_{\mathcal{S}\beta} & -\frac{1}{2}gv_{\mathcal{S}\beta} & -\mu & 0 \end{pmatrix}
$$

$$
\psi^{\pm} = (\tilde{W}^{\pm}, \tilde{H}_u^{\pm}, \tilde{W}^-, \tilde{H}_d^-)
$$

$$
M_C = \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix}, \text{ where } X = \begin{pmatrix} \frac{M_2}{\sqrt{2}} & \frac{g v s_{\beta}}{\sqrt{2}} \\ \frac{g v c_{\beta}}{\sqrt{2}} & \mu \end{pmatrix}.
$$

VEV, *v* are fixed from data while the ratio tan *—* = *vu/v^d*

. (4)

Charginos *M3. We charginos* $\frac{1}{2}$ In this model we also assume that *R*-parity is either of 5 Tev for both the pseudo-scalar Higgs mass $\mathcal{L} = \mathcal{L} \mathcal{L} + \mathcal{L} \mathcal{L}$ and $\mathcal{L} = \mathcal{L} \mathcal{L$ \tilde{H} θ decouple all space d $\left(\frac{d}{d}\right)^{n}$ $\overline{\sqrt{2}}$ μ $\overline{}$

G-EWMSSM: Preliminary

Source

```
ATLAS hadronic chargino/neutralino search [100]
ATLAS 0-lepton search [101]
ATLAS 0-lepton stop search [102]
ATLAS 1-lepton stop search [103]
ATLAS 2-lepton stop search [104]
ATLAS stop search with Z/H final states [105]
ATLAS 2-lepton chargino search [106]
ATLAS 2-b-jet stop/sbottom search [107]
ATLAS 3-b-jet Higgsino search [108]ATLAS 3-lepton chargino/neutralino search [109]
ATLAS 4-lepton search [110]
ATLAS leptons + jets search [111]
ATLAS 1-photon GGM search [112]
ATLAS 2-photon GGM search [113]
ATLAS Z + photon search [114]
CMS 0-lepton search [115]CMS 1-lepton + b-jets chargino/neutralino search [116]
CMS 1-lepton stop search [117]
CMS 2-lepton stop search [118]
CMS 2 soft lepton search [119]CMS 2-lepton search [120]
CMS 2-lepton chargino/stop search [121]CMS 2 same-sign lepton stop search [122]CMS multilepton chargino/neutralino search [123]
CMS 1-photon GMSB search [124]
CMS 2-photon GMSB search [125]
CMS 1-photon + 1-lepton GMSB search [126]
```


- Series of parameter scans w/ GAMBIT
- Scanner: **Diver** (differential evolution)
- Per point: **simulate 16M SUSY events** (Pythia, via ColliderBit)
- CPU cost: tens of millions of CPU hours…
- **Likelihoods**:
	- **15 ATLAS + 12 CMS searches** (in ColliderBit)
	- **22 «pools» of 45 ATLAS, CMS and LHCB measurements** (Contur+Rivet, via ColliderBit)
	- apply relevant LEP cross-section limits (in ColliderBit)

[2303.09082]

- \cdot **Explore the model parameter space** $(θ₁, θ₂, θ₃, ...)$
-

• At every point θ: **compute all predictions(θ) → evaluate likelihood L(θ)**

• Region of highest L(θ) or lnL(θ): **model's best simultaneous fit to all data**

(but not necessarily a *good* fit, or the most probable θ…)

Four-dimensional Rosenbrock function

Why the need for speed?

- First, BSM parameter spaces are **high-dimensional**!
	- And theorists have limited CPU resources :)
- Second, in **global fits** we seek statistically rigorous conclusions about **regions of BSM parameter spaces**
	- Need properly **converged** explorations of the **likelihood function** / **posterior distribution**
	- Must use **adaptive sampling algorithms**, that focus on higher-likelihood regions
	- So the problem is **not trivially parallelisable** (we can't just sample first, simulate later)

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space **High-dimensional spaces are exponentially tricky to explore**…

- For given sample density, the number of required samples increases exponentially
	- 0.01 resolution for a 1D unit interval: 100 points
	- 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least *one* of the walls…
- \cdot ... and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast»)

Detailed model → many parameters → high-dimensional parameter space High-dime

- -
	- \cdot 0.01 resolution 6
- The volu
- A uniform
- \cdot …and it'

• Relative differences in distances between points vanish («loss of contrast»)

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space **High-dimensional spaces are exponentially tricky to explore**…

- For given sample density, the number of required samples increases exponentially
	- 0.01 resolution for a 1D unit interval: 100 points
	- 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least *one* of the walls…
- \cdot ... and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast»)

High-dimensional

- - 0.01 resolution for $\overline{0}$
	- \cdot 0.01 resolution for
-
-
- …and it's also «a
-

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space **High-dimensional spaces are exponentially tricky to explore**…

- For given sample density, the number of required samples increases exponentially
	- 0.01 resolution for a 1D unit interval: 100 points
	- 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least *one* of the walls…
- \cdot ... and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast»)

[large number of observables]

[huge number of points required to explore parameter space]

Consequence: Detailed physics models \rightarrow huge computational challenge

[long calculation time per observable per parameter point]

So we must:

- speed up our physics computations where we can
- pick our parameter samples wisely
-

• maximise the usefulness of the CPU hours we spend

Parameter space exploration

Parameter space exploration

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, FlexibleSUSY, gamLike, gm2calc, HEPLike, HiggsBounds, HiggsSignals, MicrOmegas, nulike, Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, Vevacious, MontePython, CLASS, AlterBBN, …

Anders Kvellestad G A M $\rm B I/T$ 51

Backends

 $Not-s$ o - simple .so -simple Λ Simple
land

When optimising searches on simplified models, at what point do we start losing rather than gaining sensitivity to volumes of «similar» theory space?