Searching for anisotropies in the GWB - a path to unveil its origin

Andrea Mitridate SUSY 2024, IFT | June 13, 2024

gin litridate 13, 2024

PULSARS

Rotation Axis

Radiation Beams

Animation by NASA's Goddard Space Flight Center

Magnetic Field Axis

TIMING RESIDUALS

Pulses expected from Timing Model

Pulses Recorded by Radio Telescope

TIMING RESIDUALS

Pulses expected from Timing Model

 δt timing residuals

Pulses Recorded by Radio Telescope

A GALAXY-SIZE DETECTOR FOR GWs

credits Keyi "Onyx" Li / NSF / NANOGrav

CONTINUOUS WAVE

$h_{ij}(t, \mathbf{x}) = \sum_{A=+,\times} e^A_{ij}(\hat{n}) \cos \left[\omega(t - \hat{n} \cdot \mathbf{x})\right]$

CANAL PROPERTY

GW BACKGROUND

$h_{ij}(t, \mathbf{x}) = \sum_{A=+,\times} \int df \int d^2 \hat{n} \ \tilde{h}_A(f, \hat{n}) \ e^A_{ij}(\hat{n}) \ e^{-2\pi i f(t-\hat{n}\cdot x)}$

EVIDENCE FOR GWB

Agazie et al. [2306.16213]

EVIDENCE FOR GWB

Agazie et al. [2306.16213]

what is the source?

THE PRIMARY SUSPECT

INFLATION

astrophysics or cosmology?

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

26

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

ANISOTROPIES UPPER LIMITS

PARAMETER DEPENDENCE

number density of galaxies per decade of stellar mass

$$\Psi(m_{\star 1}, z') = \ln(10)\Psi_0 \cdot \left(\frac{m_{\star 1}}{M_{\psi}}\right)^{\alpha_{\psi}} \exp\left(-\frac{m_{\star 1}}{M_{\psi}}\right)$$
$$\log_{10}\left(\Psi_0/\text{Mpc}^{-3}\right) = \psi_0 + \psi_z z$$
$$\log_{10}\left(M_{\psi}/M_{\odot}\right) = m_{\psi,0} + \psi_z z$$

PARAMETER DEPENDENCE

relation between SMBH and host galaxy mass

$$\log_{10} \left(M_{\rm BH} / M_{\odot} \right) = \mu + \alpha_{\mu} \log_{10} \left(\frac{M_{\rm bulge}}{10^{11} M_{\odot}} \right) + \Lambda$$

 $\mathcal{N}\left(0,\epsilon_{\mu}
ight)$

PARAMETER DEPENDENCE

binary evolution model

$$\frac{da}{dt} = -\frac{64G^3}{5} \frac{m_1 m_2 M}{a^3} + H_a \left(\frac{a}{a_c}\right)^{1-\nu_{\text{inner}}} \left(1+\frac{a}{a_c}\right)^{\nu_{\text{inner}}}$$

GW emission

phenomenological model for environmental effects

FORECAST PIPELINE

the anisotropy detection probability for the parameter set θ is estimated as

 $p_{\theta} \sim -$ # realizations

detections # detections 1500

Map Rec. : Numerical Det. Stat. : SNR Frequency : 3.95 nHz	PTA	:	NANOGrav
Det. Stat. : SNR Frequency : 3.95 nHz	Map Rec.	:	Numerical
Frequency : 3.95 nHz	Det. Stat.	:	\mathbf{SNR}
	Frequency	:	$3.95\mathrm{nHz}$

PTA	:	NANOGrav
Map Rec.	:	Numerical
Det. Stat.	:	\mathbf{SNR}
Frequency	:	$3.95\mathrm{nHz}$

Lemke, AM, Gersbach., in preparation

PTA	:	IPTA
Map Rec.	:	Numerical
Det. Stat.	:	\mathbf{SNR}
Frequency	:	$3.95\mathrm{nHz}$

Lemke, AM, Gersbach., in preparation

CONCLUSIONS

evidence for a GWB in the nHz band

source is still unknown: astrophysics or cosmology?

GWB anisotropies can help us discriminate between sources

the current null anisotropy detection is not in tension with an astrophysical origin

