Maria Grazia Pellegriti INFN-Sezione di Catania Possible contribution to the GF physics activities: Nuclear Resonance Fluorescence

Outlook

- Nuclear Resonance Fluorescence
- ²⁶Al measurements @ $HI\gamma S$
- A set-up for γ beams diagnostic
- Other target cases
- Conclusions

Nuclear Resonance Fluorescence

The nucleus is resonantly excited by absorption of a γ ray and decays by emitting a γ ray either back to the ground state or to an excited state.

This process is very useful validate resonance properties.

It is used in a wide variety of applications including reaction rate calculations, nuclear astrophysics, nuclear reactor simulations.

Metzger F.R., Progress in Nuclear Physics 7 (1959) 53

Process cross-section

 γ ray emission from properly selected nuclear levels of a given nucleus X when resonant condition with the impinging γ ray energy is achieved

Metzger F.R., Progress in Nuclear Physics 7 (1959) 53

Twofold application

Known nuclear levels
 → Provide an absolute
 γ beam energy calibration and band-width measurements

• Explore unknown nuclear parameters by using a γ ray beam \rightarrow Find E_r, Γ_i and spin of the level

Beam energy scanning

²⁷Al case

http://www.nndc.bnl.gov/chart/getbandplot.jsp?unc=nds

Pietralla et al. PRC 51 (1995) 1021 Bremsstrahlung facility – Stuttgart Dynamitron accelerator

TABLE I. For six ²⁷Al levels below 4 MeV the nuclear self-absorption was measured. The determined level widths and lifetimes $\tau = \hbar/\Gamma$ confirm the literature values in all cases. The last row displays an error-weighted mean value from the results of this measurement and the literature data (recommended best values). The level energy 2212.01(10) which we obtained deviates from the literature.

Contraction of the second s	and the second division of the second divisio				the second s		
E	[keV]	1014.45(3)	2212.01(10)	2734.9(7)	2982.00(5)	3004.2(8)	3956.8(4)
R	[%]	10(12)	26.56(58)	7.1(28)	33.34(59)	5.6(23)	19.9(17)
$\tau^{\mathbf{a}}$	[fs]	> 240	38.1(10)	14(6)	5.63(13)	93(39)	3.94(40)
$\Gamma^{\mathbf{a}}$	[meV]	< 2.7	17.29(46)	46(19)	116.9(27)	7.1(30)	167(17)
$\Gamma_{lit}{}^{b}$	[meV]	0.306(15)	17.14(40)	51(7)	115(6)	7.74(46)	183(15)
Γ^{c}	[meV]	0.306(15)	17.19(31)	51(7)	116.7(25)	7.74(46)	177(11)
°This w	ork.			······			
^b See [13].							
CTTT - 1 -		c 1.				V	

^cWeighted mean value from a and b.

The high-precision results from Pietralla et al. have been widely used as the standard for flux calibration in NRF experiments

Measured at $HI\gamma S - TUNL$ (USA) to perform spin assignment

²⁷Al case @HlγS

PHYSICAL REVIEW C 90, 054315 (2014) Validating resonance properties using nuclear resonance fluorescence

C. T. Angell,^{1,*} R. Hajima,¹ T. Hayakawa,¹ T. Shizuma,¹ H. J. Karwowski,^{2,3} and J. Silano^{2,3}
 ¹Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan
 ²Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
 ³Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308, USA

Set-up at $HI\gamma S - TUNL$ (USA)

	HlγS	
Bandwidth (rms)	1.4%	0.3%
FWHM	100 keV	21 keV
Beam intensity	10 ⁸ γ/s	
		10 ⁴ γ/s eV
Target thickness	25.3 mm	

A system for Gamma beam characterization

 Nuclear Instruments and Methods in Physics Research A 865 (2017) 60–62

 Contents lists available at ScienceDirect

 Nuclear Instruments and Methods in Physics Research A

 EVIER

 journal homepage: www.elsevier.com/locate/nima

EuroGammaS gamma characterisation system for ELI-NP-GBS: The nuclear resonance scattering technique

A METHODS IN PHYSICS RESEARCH

M.G. Pellegriti^{a,*}, O. Adriani^{b,c}, S. Albergo^{a,d}, M. Andreotti^e, D. Berto^f, R. Borgheresi^{b,c}, G. Cappello^a, P. Cardarelli^e, E. Consoli^e, G. Di Domenico^e, F. Evangelisti^e, M. Gambaccini^{e,f}, G. Graziani^b, M. Lenzi^b, M. Marziani^e, L. Palumbo^{g,h}, G. Passaleva^b, A. Serban^{b,1}, M. Spina^d, O. Starodubtsev^b, M. Statera^e, A. Tricomi^{a,d}, A. Variolaⁱ, M. Veltri^{b,j}, B. Zerbo^a

<u>Compton Scattering Spectrometer</u>

high-precision measurements of **single** Compton scattering from thin target

<u>Absorption Calorimeter</u>

calorimetric, total absorption technique

Profile Imager

y-beam

<u>Nuclear Resonant Scattering calibration System</u>

high-precision energy measurement at selected energy values for **absolute energy calibration**

The Nuclear Resonant Scattering System set-up

Nuclear Resonant Scattering System – Detector Design

n. 4 BaF₂ counters

Detector working modes

1) Fast Counter Mode (FC Mode)

Fast beam energy scan, giving a prompt information on the establishment of the resonance. \rightarrow External BaF₂ crystals.

2) Energy Spectrometer Mode (ES Mode)

Slower measurement for the later redundant level identification. \rightarrow Internal LYSO with the external BaF₂ working as Compton shield.

Fast component: o.88ns; Slow component: 600ns

SENS

RADIANT (

PHOTOCATHODE QUANT

Other target examples that can be used for calibration

- Nuclear Resonance Fluorescence is an interesting tool
 - To be used for investigating nuclear properties needed for reaction rate calculations, nuclear astrophysics, nuclear reactor simulations
 - To be used for γ ray beam characterization