

Collection of notes about photon detection @ SPS GF PoP

F. Roncarolo, E.Bravin, S.Burger, T.Lefevre 11-Dec-2023

- Detect the X-ray photons produced at the IP
- Simple and reliable, making use of existing
- Movable YAG:Ce scintillating screen with camera 7m downstream the IP
- Central hole for the passage of the ion bunch
- System using existing SPS beam screen design

9

4/01/2022

GF SPS Pop for BI

Experimental Layout

Parameter	Value
Half-cell	621
Cell description	Dispersion suppression cell with 2 missing dipoles
Drift space	Around 13 m
Longitudinal coordinate of IP	s=6451 m
Beta x	55.32 m
Beta y	43.87 m
D x	2.46 m
Dy	0 m

Ion Beam Parameters

	Value
Lithium-like lead	208Pb79+
Particle mass	193.69 GeV/c^2
Energy	18.652 TeV
Gamma factor	96
Number of ions per bunch	9E7 ions/bunch
Number of bunches	36
Particle lifetime	100 s
Relative energy spread (DE/E)	2e-4
Transverse emittance (xy)	1.5 um
Beam sizes	Sigma x = 1 mm, Sigma y = 0.83 mm, Sigma z = 6.3 cm (213 ps)
Collision angle	2.6 deg

Laser Beam Parameters

Laser Parameter	Value
Wavelength	1034 nm
Oscillation Frequency	40 MHz
Average Power	50 W
Single Pulse Energy	5 mJ (or 0.5 mJ) @ 43 kHz
Beam Sizes (Sigma)	xy = 0.65 mm, z = 2.8 ps
Collision Angle	2.6 deg

Gamma Photons

Parameter	Value
Excited state lifetime	76.6 ps
Gamma boost factor	4*gamma^2
Maximum energy of photons	44.47 keV

Photon (X-ray) detector (Phase 1)

- Scintillator and camera/photomultiplier for flux quantification
- Proposed scintillator: YAG screen, typical yield: 8 photons per
- Half-screen surrounding the beam with clearance
 - Simulated values: Dz IP-screen 7 m, screen r_min=4 cm, r_max=6 cm
 - Large aperture screen: Total photon flux emitted: 3E13 photons/s
 - Photons recorded by camera at 50 cm: Reduced by factor 150 (to be verified, likely smaller #photons)
 - Photons flux on the camera: 2E11 photons/s (to be verified)

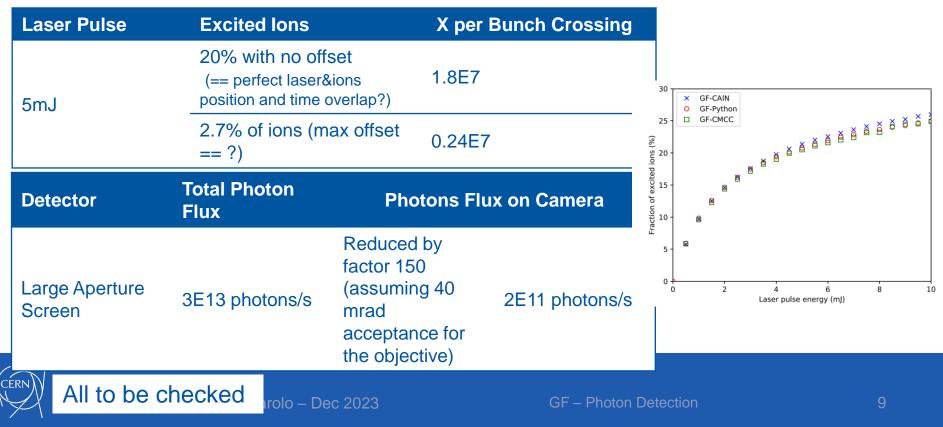
Screen Dimensions	R min = 4 cm Rmax	k = 6 cm	
Small hole	25 x 12.5	0.15 0.15 0.10	
Large hole	59 x 17		



Fig. 24: Detector screens considered with elliptical holes and referred to as the large aperture, on LHS, and the small aperture, on RHS. The transported photons in the ideal conditions are shown as black dots.

0.2

-0.10


porizontal (m

0.2

orizontal (m)

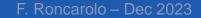
Photons Flux @ detector

• Time overlap between ions and laser must be measured and adjusted to better than 0.5 ns

Photon (X-ray) detector (Phase 2)

Timepix : solid state detector capable of resolving xray position and energy (tbc)

Chip	Dimensions
Timepix3	14 x 14 mm2
Timepix4	448 x 512 pixels, 55um2 per pixel \rightarrow 24.6 x 28.2 mm2


May need multiple chip sensors

		Timepix3	Timepix4	
Technology		IBM 130nm	TSMC 65nm	
Pixel Size		55 x 55 μm	≤ 55 x 55 μm	
Pixel arrangement 3-		3-side buttable	4-side buttable	
		256 x 256	256 x 256 or bigger 448	x 5
Operating Modes Data driven Frame based		PC (10-bit) and TOT (14-bit)	CRW: PC and iTOT (1216-bit)	
		TOT and TOA		
Zero-Suppressed	Data driven	< 80 MHits/s	< 500 MHits/s	
Readout	Frame based	YES	YES	
TOT energy resolut	ion	< 2KeV	< 1Kev	
Time resolution		1.56ns ~200ps		
Readout bandwidt	h	5.12Gb (8x SLVS@640 Gbps) 20.48 Gbps (4x 5.12 Gbps)		
Front-end		"with" Volcano	No volcano → Dynamic gain	
		with volcano	But supply only 1.2V	

SPARE

Scintillator and PMT/Camera

Estimated Costs

Design	20 kCHF	
Fabrication	20 kCHF	
Screen and supports	10 kCHF	
Cables and fibers	10 kCHF	PMT, Camera?
Electronics	10 kCHF	
Work BI-PM	2 MM	
Work BI-ML	2 MM	
Total	70 kCHF	
Total work	4 MM	

Vacuum tank	40 kCHF
Detector, cables and electronics	60 kCHF
Work EA + ML	4 MM
Work for detector design	1 MY (possibly a fellow or doctoral student)

Timepix

Estimated Costs

