

γ-ray beam diagnostic for the GF@CERN

A. Musumarra and M.G. Pellegriti

Example of gamma (neutron) flux characterization

Gas detector (IC-Micromesh-PPAC)

CEA-Saclay PTB Orsay

PTB Fission Chamber and Micromegas

Photofission cross-section for U-238

ELI-NP fission chamber

n-flux characterization routinely performed by PTB fission chamber, MGAS and SiMon detectors (also stacked)

Reaction	Standard energy range
$^{6}\mathrm{Li}(n,t)$	$0.0253\mathrm{eV}$ to $1\mathrm{MeV}$
${}^{10}\mathrm{B}(n, \alpha)$	$0.0253\mathrm{eV}$ to $1\mathrm{MeV}$
$^{235}\mathrm{U}(n,f)$	$0.0253\mathrm{eV}$ and $0.15200\mathrm{MeV}$
$^{197}\mathrm{Au}(n,\gamma)$	$0.0253\mathrm{eV}$ and $0.22.5\mathrm{MeV}$

Micromegas@n TOF

EAR2@ n_TOF

The European Physical Journal A volume 49, Article number: 156 (2013)

https://cds.cern.ch/record/1746358

Some example of neutron flux characterization n_TOF@CERN (INFN)

Solid-state: Silicon detector (SiMON)

A. Musumarra et al. Int.J.Mod.Phys.Conf.Ser. 44 (2016) 1660210

Same technique to be used for (γ ,cp) reactions

POP First option: fast scintillator crystal with dedicated PM

EJ-232 plastic scintillator is intended for very fast timing applications or when very high pulse pair resolution is required. Due to the small emission wavelength, the optical mean free path of this scintillator is approximately 10 cm. Therefore, to achieve the best light collection and to optimize the timing performance, EJ-232 should be used in a small size with the largest scintillator dimension less than 10 cm to minimize photon scattering effects. The use of light guides is best avoided.

EJ-232Q plastic scintillator is a quenched variant of EJ-232 specifically formulated for ultra-fast counting applications. The introduction of small amounts of benzophenone to EJ-232 significantly shortens the timing properties for purposes of achieving very high counting rates or improved coincidence timing. The quenching does not affect the emission spectrum but does reduce the scintillation efficiency (see table below). While it is recommended to keep the scintillator size and shape small in order to achieve the best timing performance, it is not recommended to use EJ-232Q in thin films (thicknesses \leq 3 mm) due to the vapor pressure of benzophenone.

PROPERTIES	EL 222	E I-232Q (% BENZOPHENONE)				
PROPERTIES	EJ-232	0.5	1.0	2.0	3.0	5.0
Light Output (% Anthracene)	55	19	11	5	4	3
Scintillation Efficiency (photons/1 MeV e ⁻)	8,400	2,900	1,700	770	610	460
Wavelength of Maximum Emission (nm)	370	370	370	370	370	370
Rise Time (ps)	350	110	105	100	100	100
Decay Time (ps)	1,600	700	700	700	700	700
Pulse Width, FWHM (ps)	1,300	360	290	260	240	220
H Atoms per cm ³ (×10 ²²)	5.13	5.12	5.12	5.12	5.12	5.12
C Atoms per cm ³ (×10 ²²)	4.66	4.66	4.66	4.66	4.66	4.66
Electrons per cm ³ (×10 ²³)	3.30	3.38	3.38	3.38	3.38	3.38
Density (g/cm ³)	1.023	1.023	1.023	1.023	1.023	1.023

Try to achieve

2-3 ns signal length

10-100 MHz

HAMAMATSU PHOTON IS OUR BUSINESS PMT MODULES FOR UNDERWATER OPTICAL COMMUNICATIONS

HIGH-SPEED RESPONSE

Photomultiplier already at INFN-CT scintillator will be delivered by SCIONIX on january 2024

H14601-200

	Parameter			H14600 / H1	4601 series		Unit
Suf	fix		-100, -103	-200	-01, -04	-20	_
Input voltage			+4.5 1	o +5.5		V	
Ma	k. input voltage			5	.5		V
Ma	k. input current *1			3	.5		mA
Max. average output signal current *2				1	00		μA
Ma	control voltage			+1.0 (Input im	pedance 1 MΩ)		V
Recommended control voltage adjustment range			+0.5 to +1.0 (Input	impedance 1 MΩ)		v	
Effective area				\$	8		mm
Peak sensitivity wavelength			400	400	400	630	nm
		Min.	80	100	100	350	μA/lm
Cathode	Luminous sensitivity	Тур.	105	135	200	500	
	Blue sensitivity index (Blue filter)	Тур.	13.5	15.5	—	—	_
	Red/White ratio	Тур.	—	—	0.25	0.45	—
	Radiant sensitivity *3	Тур.	110	130	77	78	mA/W
	Luminous sensitivity *2	Min.	30	40	40	140	A/lm
g		Тур.	105	135	200	500	
ĕ	Radiant sensitivity *2*3	Тур.	1.1 × 10 ⁵	1.3 × 10 ⁵	7.7 × 10 ⁴	7.8 × 10 ⁴	A/W
◄	Dark current *2*4	Тур.	0.5	0.5 1	10	nA	
		Max.	5	5	10	100	
Ris	e time *2	Тур.		0.6			ns
Ripple noise *2*5 (peak to peak) Max. 0.2			.2		mV		
Settling time *6 Max.			10				S
Operating ambient temperature *7			+5 to +50				°C
Storage temperature *7			-20 to +50				°C
Weight			32 (H14600 series), 40 (H14601 series)			g	

TIME (1 ns/div.)

Second option: Si-junction (SiC/Diamond) for x-ray spectroscopy

Si PIN HAMAMTSU Photodiode 320-1000nm Metal TO-18 available and tested with HG charge pre-amp

Temperature (°C)

φ 0.4 mm

241Am

30

Energy (keV)

40

50

60

70

NUCLEAR ASTRUMEN & METHOD PHYSICS

Check for updates

Second option: Si-junction front-end electronics

	Specifications	Assume temp =20 °C, V_s = ±6V, unloaded output				
		CR-110-R2.2	units			
	Preamplification channels	1				
	Equivalent noise charge (ENC)*					
	ENC RMS	200	electrons			
	Equivalent noise in silicon	1.7	keV (FWHM)			
	Equivalent noise in CdZnTe	2.4	keV (FWHM)			
	ENC slope	3.8	elect. RMS /pF			
	Gain	1.4	volts /pC			
	Rise time **	3	ns			
	Decay time constant	140	μs			
	Unsaturated output swing	-3 to +3	volts			
	Maximum charge detectable per event	1.3 x10'	electrons			
	Power supply voltage (V _s)	2.1	рС			
	maximum	$V_s = \pm 13$	volts			
	minimum	$V_s = \pm 6$	volts			
	Power supply current (pos)	9	mA mA			
	Power dissipation with no load	85	mW			
	Operating temperature	-40 to +85	°C			
	Output offset	+0.2 to -0.2	volts			
	Output impedance	50	ohms			

Cremat, Inc.

CR-110

rev. 2.2

In-vacuum

Ready to use

A250 Connection Diagram amptek

New low noise scheme implemented by INFN-CT (FET close to the detector)

M. D'Andrea technical unit INFN-CT in charge