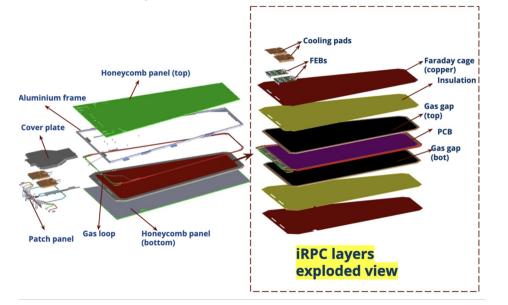
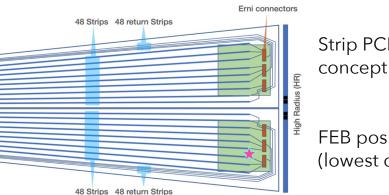

New RPC Gas Mixtures for Sustainable Operation in the CMS Experiment

Dayron Ramos Lopez on behalf of CMS and RPC EcoGas@GIF++ Collaboration dayron.ramos.lopez@cern.ch


CMS RPC Upgrade Project

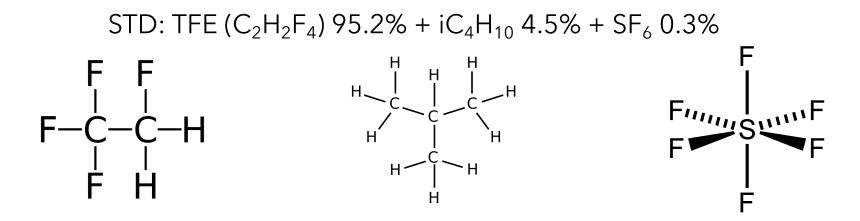
- To cope with the high particle rate and high pileup environment due to increased luminosity in HL-LHC, the CMS forward region demands → improved trigger and reconstruction performance!
- Installation of new RPC stations in the forward region \rightarrow Improved Resistive Plate-Chambers (iRPC)


CMS RPC Upgrade Project iRPC: improved Resistive Plate Chambers

hambers	RPC	iRPC	
HPL thickness (mm)	2	1.4	
Number of gas gaps	2	2	
Gas gap thickness (mm)	2	1.4	
Resistivity (Ωcm)	1 - 6 x 10 ¹⁰	0.9 - 3 x 10 ¹⁰	
Charge threshold (fC)	150	30 - 40	
Space resolution in η (cm)	20 - 28	1.5	
Space resolution in ϕ (cm)	0.8 - 1.9	0.3 - 0.6	
Intrinsic timing resolution (ns)	1.5	0.5	

- Double readout in the strips high and low radius
- Charge threshold between 30 and 40 fC

More details in talks: <u>Innovative Resistive Plate Chambers for the CMS</u> <u>Phase 2 Upgrade: Project Summary, Construction, and Quality</u> <u>Assurance by Jules Vandenbroeck and iRPC front-end board readout</u> <u>electronics</u> by Maxime Gouzevitch



Strip PCB allow Return line concept

FEB positioned external and @ HR (lowest dose region)

Gaseous mixture for RPC operation at CMS

- High density of primary ion-electrons pairs \rightarrow high RPC efficiency
- Good quenching properties and electronegativity \rightarrow very low streamer probability
- High rate capability

Nowadays increased attention on GHGs emissions: F-gas regulation aims in limiting emissions, GHGs availability, price

Total CERN emissions during 1 year of Run 2 ~ 200 000 tCO2e

detector, used for ALICE, ATLAS and CMS systems

 $C_2H_2F_4/R-134a$ biggest contributor \rightarrow leaks from RPC

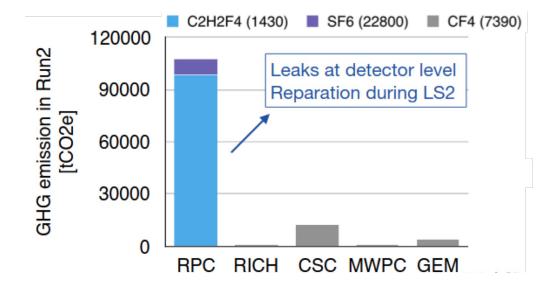
~ **50%** from particle detectors

Greenhouse gas usage at CERN (1)

- CERN Environment Report 2019-2020 •
- 2021: CERN's Year of Environmental Awareness.
- CERN Environment workshop: 12 and 13 October 2022 •
- CERN Environment Report 2021-2022 •

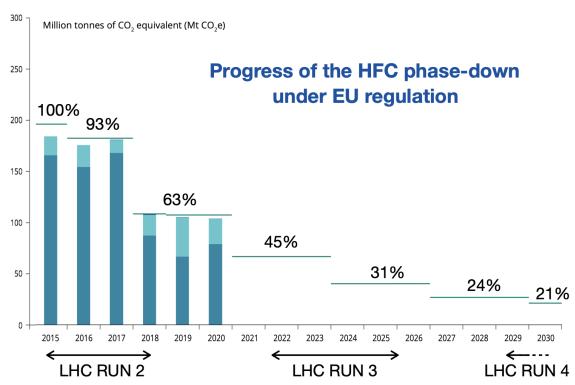
11/09/2024

200000 $CF_4 \rightarrow$ due to operation of CSC and RICH systems **Emissions from** 180000 $SF_6 \rightarrow$ Related to RPCs as R-134a particle detection 160000 tCO2e Gas consumed for all LHC experiments 100000 100000 80000 kg] 80000 CO2_e [10³ 60000 60000 LHC experiments - Particle detection LHC experiments - Detector cooling 40000 Other experiments 40000 Heating (gas + fuel) Other 20000 20000 Electricity consumption (EDF) Electricity consumption (Hungary) Scope 1 Scope 2 Scope 1 2017 2018 2019 2020 R-134a SF6 CF4 LS2 Run2


Run 1

Run 2

LS1



Greenhouse gas usage at CERN (2)

Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
 Banning the use of F-gases where less harmful alternatives are widely available.

Preventing emissions of F-gases from existing equipment by requiring checks, proper servicing and recovery

Eco-friendly mixtures candidates

- Requirements: low GWP, low toxicity, not flammable and detector performance comparable with standard one
- In industrial applications $C_2H_2F_4$ is being replaced with HydroFluoro- H Olefins (HFOs)
- the replacement of $C_2H_2F_4$ with HFO moves the operating voltage at much higher values (es. >13kV for 2 mm gap)
- the addition of CO₂ helps in decreasing the WP

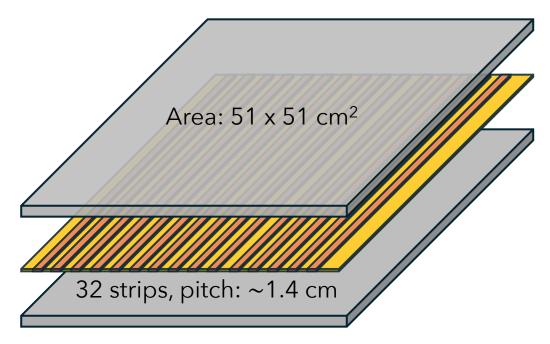
lydro-Fluoro-Olefin (HFO)				
				C=C double bond
			fluorir	ne-containing
hydrogen-containing				

	TFE (%)	HFO-1234ze (%)	CO ₂ (%)	iC ₄ H ₁₀ (%)	SF6 (%)	GWP	CO ₂ e (g/l)
STD	95.2	-	-	4.5	0.3	1485	6824
ECO2	-	35	60	4	1	476	1522
ECO3	-	25	69	5	1	527	1519
Density (g/l)	4.68	5.26	1.98	2.69	6.61	-	-
GWP	1430	7	1	3	22800	-	-

GWP with respect to CO₂, and their CO₂e, in grams, for one litre of mixture In mixtures containing HFO, values mainly driven by SF₆

Alternatives mixtures candidates

 Alternatives mixtures based on TFE/CO₂ have been also explored at GIF++ as mitigation solution to the continue increases of the TFE's price in the market due to the EU banning


Aging and **performance** results operating iRPC gaps with this mixtures can be found in the talk: <u>Performance</u> and longevity of CO2 based mixtures in CMS Improved <u>Resistive Plate Chambers in the HL-LHC environment</u> by Joao Pinheiro

	TFE (%)	HFO-1234ze (%)	CO ₂ (%)	iC ₄ H ₁₀ (%)	SF6 (%)	GWP
STD	95.2	-	-	4.5	0.3	1485
ECO2	-	35	60	4	1	476
ECO3		25	69	5	1	- 527
MIX1	64	0	30	5	1	1529
MIX2	54	0	40	5	1	1353
MIX3	64.5	0	30	5	0.5	1337
Density (g/l)	4.68	5.26	1.98	2.69	6.61	-
GWP	1430	7	1	3	22800	-

iRPC gaps prototype

Double gap layout of iRPC gaps prototype

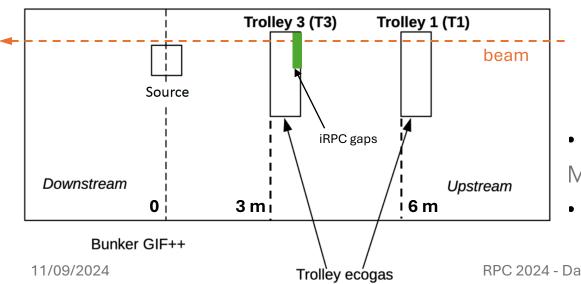
Electrode bulk resistivity: $1.17-1.39 \times 10^{10} \Omega$ cm

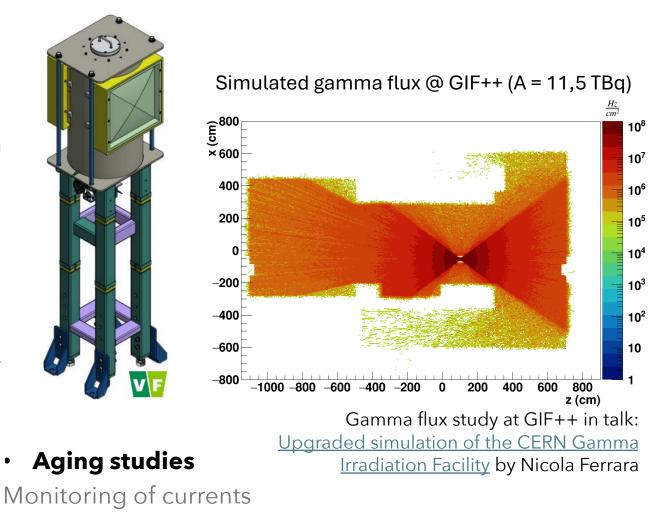
R&D readout system

- Single side strip readout (strips terminated with 50 Ω)
- KODEL Front-end electronic
 + CAEN multi-hit TDC model V1190

KODEL FEB

PETIROC ASICs 32 channels Independent linear amplification (gain 200) THR range 20-100 fC (ethernet controller) → set at 60 fC

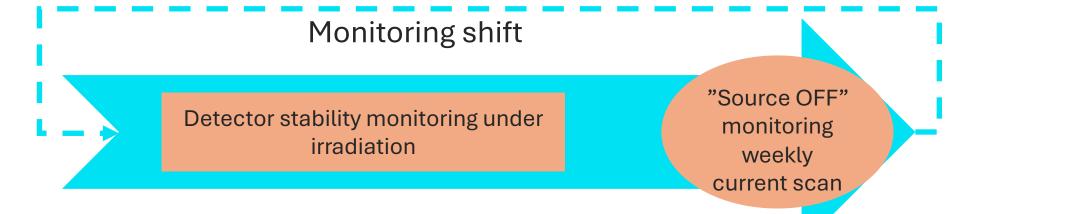



Setup at GIF++

- 12.2 TBq ¹³⁷Cs + H4 SPS beam line
- Radiation intensity attenuated by combination of filters

Gas mixer unit to provide up to 4 component gas mixture (humidified)

C2H2F4, iC4H10, SF6, CO2, Ar, HFO



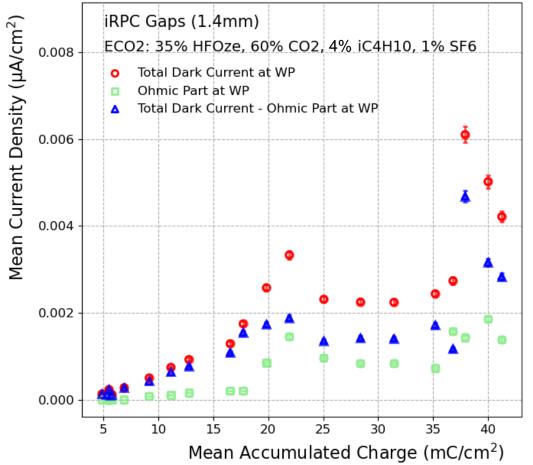
Detector performance studies (beam tests)

Aging studies

Aging program in EcoGas@GIF++

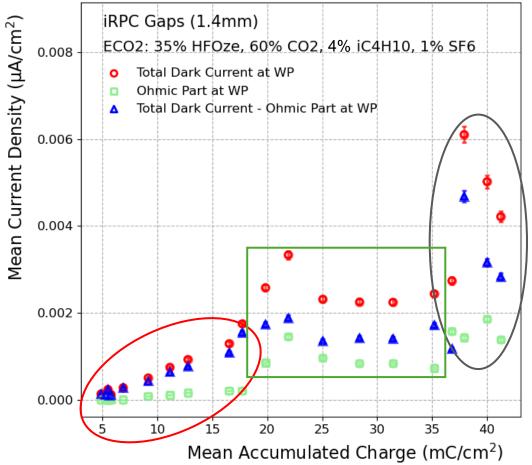
- Detector HV switched ON at fixed value during all week \rightarrow Stability monitoring
- HV is corrected every minute

 $HV_{app} = HV_{eff} \left[(1 - \alpha) + \alpha \frac{P}{P_0} \frac{T_0}{T} \right]$


- Detectors are exposed to the γ flux from the ¹³⁷Cs source \rightarrow current and voltages are monitored by shifts
- Source OFF scans are performed at the end of each monitoring shift for dark current monitoring

Aging monitoring

CMS and ECOGas@GIF++preliminary

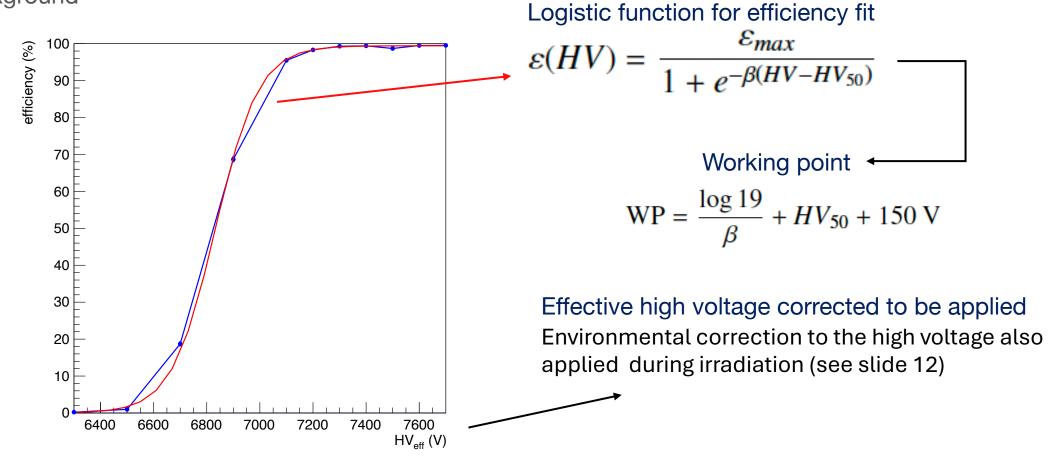


 ~ 45 mC/cm² have been slowly integrated and current values are monitored at the estimated operational value for ECO2 mixture (WP ~ 8.1 kV)

Aging monitoring

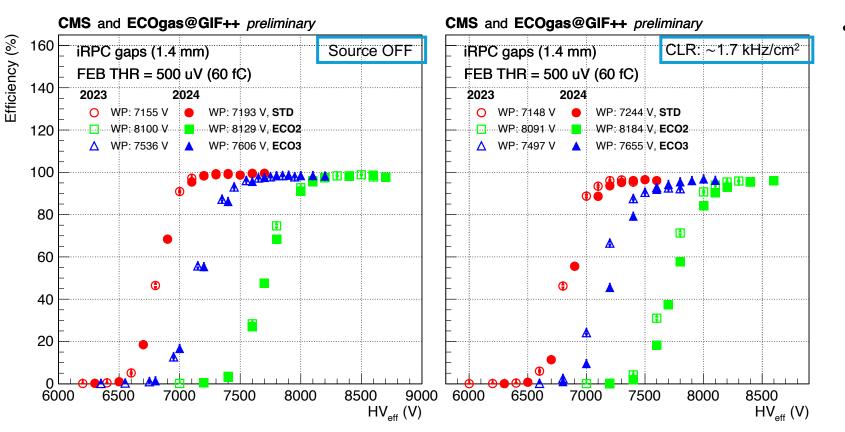
CMS and ECOGas@GIF++preliminary

- ~ 45 mC/cm² have been slowly integrated and current values are monitored at the estimated operational value for ECO2 mixture (WP ~ 8.1 kV)
- Initial current increase up to ~ 17 mC/cm² followed by stable values
- Some instabilities at around ~ 40 mC/cm² which will be verified after more charge accumulation



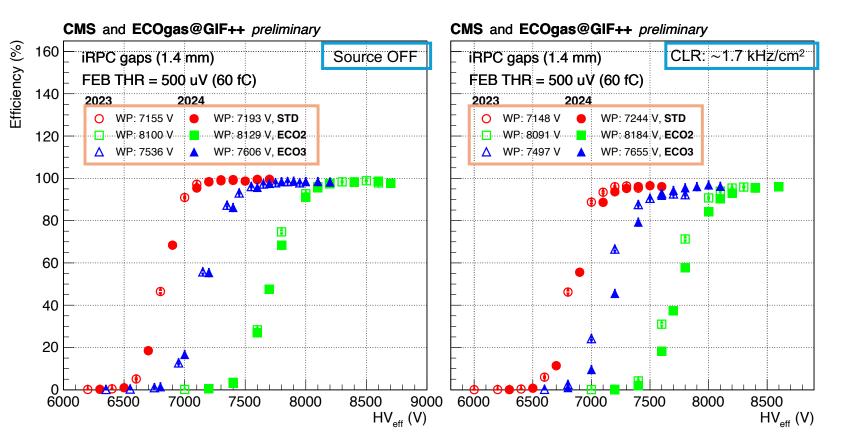
Performance verification

Some definitions


Example of high voltage scan of a chamber in absence of gamma background

Performance verification (1)

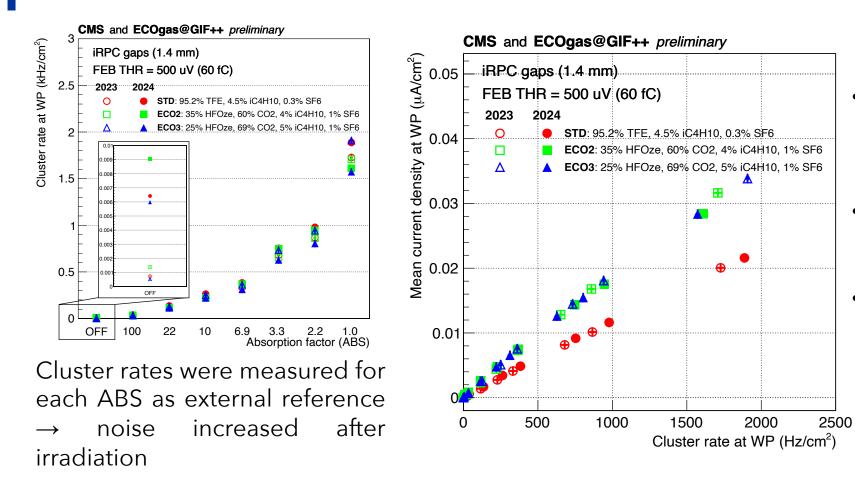
Efficiency and Working Point



 Efficiency measured up to the higher background conditions achievable at GIF++ shows no drops after irradiation

Performance verification (1)

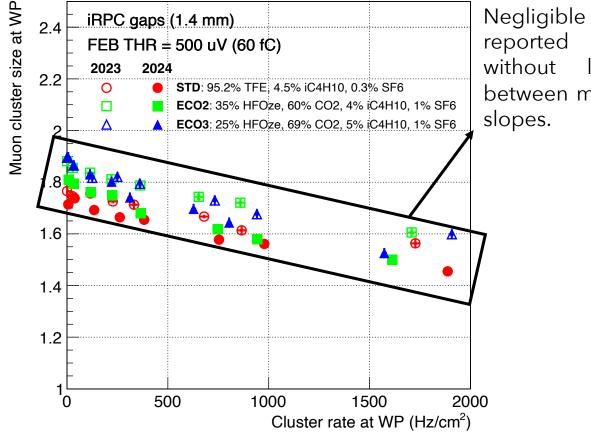
Efficiency and Working Point



- Efficiency measured up to the higher background conditions achievable at GIF++ shows no drops after irradiation
- Slightly shift of WP to higher higher values have been observed (effect observed in all chamber of EcoGas@GIF++ Collaboration, see talk <u>Performance and long-term</u> <u>ageing studies on Eco-Friendly</u> <u>Resistive Plate Chamber</u> <u>detectors</u> by Marcello Abbrescia)

Performance verification (2)

Rates and current density

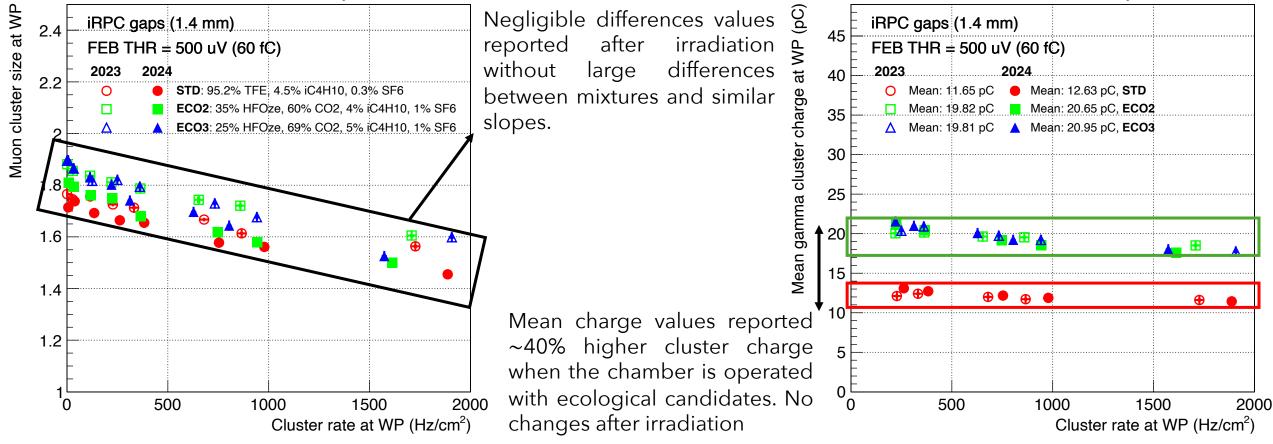

- Lower current values monitored operating the prototype with STD mixture
- Similar values and slope using eco-friendly candidates
- **Stable chamber:** current values in agreement after irradiation according the cluster rates measured

Performance verification (3)

Muon cluster size and gamma cluster charge

CMS and EcoGas@GIF++ Preliminary

Negligible differences values reported after irradiation without large differences between mixtures and similar slopes



CMS and EcoGas@GIF++ Preliminary

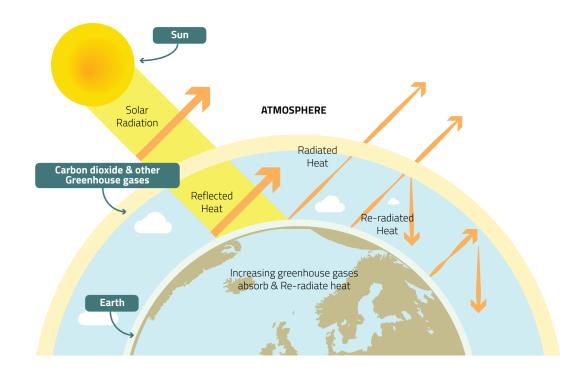
Performance verification (3)

Muon cluster size and gamma cluster charge

CMS and EcoGas@GIF++ Preliminary

Summary

- Involved in the CERN phase-down of fluorinated GHG emissions, the CMS within RPC EcoGas@GIF++ collaboration have joined efforts to find a solution for the environmentally friendly operation of RPCs on view of the HL-LHC phase
- After a few months of aging campaign (charge integration: ~45 mC/cm²), the performance of a
 prototype equipped with iRPC gaps has been verified through beam test at GIF++
- The chamber has reported a **increased noise level after irradiation without** suffering **efficiency losses** even under higher gamma backgrounds
- Slightly higher WP were estimated after irradiation for all the mixtures.
- Mean gamma cluster charge values have been verified to be 40% higher when the chamber is operated with the ecological candidates what might foresee the appearance of faster aging effects in case of their existence
- The aging campaign will continue for a better understanding of longevity effects operating iRPC gaps with HFO/CO₂ and TFE/CO₂ based mixtures

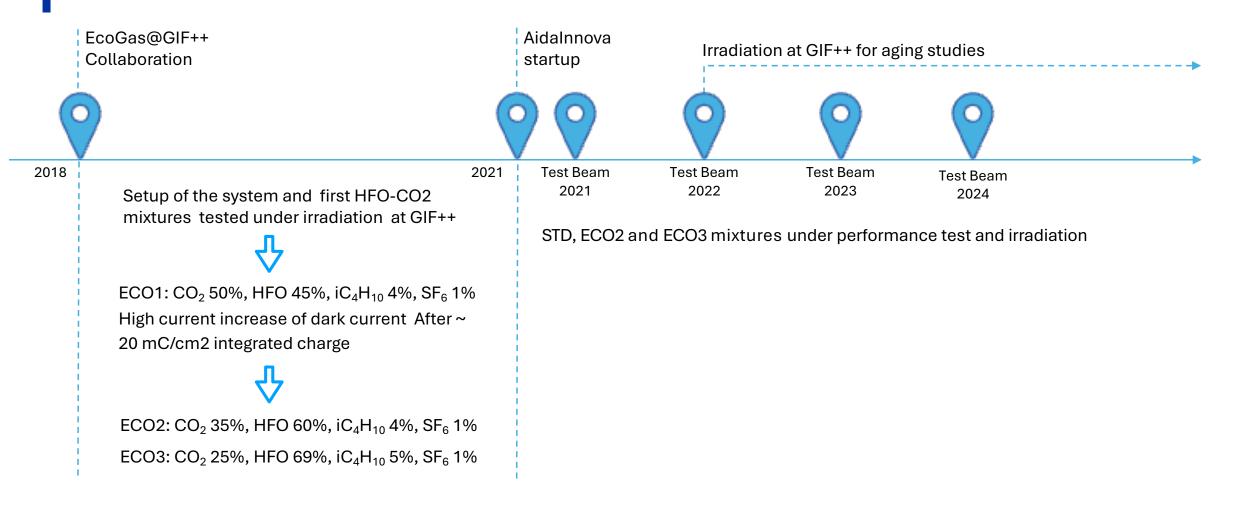

THANKS!

dayron.ramos.lopez@cern.ch

Backup slides

Global Warming Potential (GWP) and GHG emissions at LHC

Greenhouse Gases (GHGs) are gases in the earth's atmosphere that trap heat.



Global warming potential (GWP) is an index to measure of how much infrared thermal radiation a GHG would absorb over a given time. It is expressed as a multiple of the radiation that would be absorbed by the same mass of carbon dioxide, which is taken as a reference gas.

Gas	Atmospheric lifetime	GWP _{100 years}
CO ₂	50-200 years	1
R-134a	14 years	1430
CF ₄	50,000 years	7390
C ₄ F ₁₀	2600 years	9200
SF ₆	3200 years	22800

Gases used at CERN with high GWP

EcoGas at GIF++ collaboration timeline

