

Ece Asilar Hanyang University South Korea

Universidad de Ios Andes

Andrés Cabrera on behalf of the CMS Collaboration Universidad de los Andes Colombia

September 9, 2024

https://indico.cern.ch/event/1354736/

XVII Conference on Resistive Plate Chambers and Related Detectors

Novel ideas for CMS L1 trigger in HL-LHC using RPC ultimate timing performance

The Resistive-plate Chambers in CMS

CMS RPC Upgrade Project

CMS RPC Upgrade Project -> Link System

Key parameters:

- This will improve the time resolution from **25 ns to 1.56 ns.**
- Data transmission will be increased from **1.6 Gbps** to **10.24 Gbps**.

CMS RPC Upgrade Project -> Link System

CMS RPC Upgrade Project -> iRPC

[CMS-TDR-016, Fig 1.4]

	RPC	iRPC
HPL thickness (mm)	2	1.4
Number of gas gaps	2	2
Gas gap thickness (mm)	2	1.4
Space resolution in η (cm)	20 - 28	1.5
Space resolution in ϕ (cm)	0.8 - 1.9	0.3 - 0.6
Intrinsic timing resolution (ns)	1.5	0.5

- Double readout in the strips high and low radius.
- Total 72 iRPC (20°) chambers
- 1.8< |η| <2.4
- iRPC are able to sustain high expected rates of up to 2 kHz/cm2, with hit efficiency > 95%

7

CMS RP	Innovative Resistive Plate Chambers for the CMS Phase 2 Upgrade: Project Summary, Construction, and Quality Assurance Talk by Jules Vandenbroeck
	iRPC front-end board readout electronics Talk by Maxime Gouzevitch
HPL thickness Number of gas	Use and application of the CMS RPC in future experiments Talk by Ece Asilar
Space resolution	Performance and longevity of CO2 based mixtures in CMS Improved Resistive Plate Chambers in the HL-LHC environment
Intrinsic timing	A novel solution for managing latency in the CMS iRPC backend: Check-Sort-Push Poster by Weizhuo Diao
	Erri connectors IRPC clustering algorithm and hit reconstruction Poster by Mauricio Thiel Irracker IRPC FEB cooling system
Low Radius (L	Poster by Otari Kemularia Gas gaps and chambers quality control of improved resistive plate chambers (iRPC) Poster by Mohammad Ahammad Ali
	Preliminary aging studies of improved RPC gaps operated with HFO based mixtures Poster by Zubayda Eve Kofi
	48 Strips 48 return Strips CMS RPC L1 Trigger primitives in HL-LHC Poster by Qingfeng Hou

HL-LHC Challenges

High particle rate and high pileup environment due to increased luminosity

- Maintain triggers at thresholds needed for sensitivity for physics:
 - Electroweak
 - Higgs
 - BSM
- To reject particles originating from pile-up vertices
- To maintain object reconstruction in the high-luminosity environment

		HL-LHC	HL-LHC
		nominal	ultimate performance
Instantaneous			
luminosity	2 x 10 ³⁴	5 x 10 ³⁴	7.5 x 10 ³⁴
(cm ⁻² s ⁻¹)			
Integrated			
luminosity	300	3000	4000
(fb ⁻¹)			
Pile Up	50	140	200

	CMS	CMS	
	Phase1	Phase 2	
L1 trigger (kHz)	100	750	
L1 latency (µs)	3.6	12.4	

Improvements in trigger for the CMS phase 2 with RPC

information added to the algorithm.

10

An extension to the Analytical Method clustering algorithm for BMTL1 benefitting from CMS RPC timing Poster by Raphael Gomes De Souza

Long-lived particles (LLPs) -> Physics beyond the SM

 $c\tau \gtrsim 10 \ \mu m$ for BSM LLPs

Searches for long-lived particles are well motivated by various classes of extensions of the Standard Model:

- Minimal supersymmetric SM (MSSM)
- Neutral naturalness
- Hidden sector dark matter
- Breaking of symmetries motivated by cosmology, etc...

Standard reconstruction algorithms may reject events or objects containing LLPs.

[J.Phys.G 47 (2020) 9, 090501, Fig 1.2]

Often, the production cross section for such processes is expected to be very small. The HL-LHC will allow for the collection of much larger data sets needed to reach better sensitivity to such BSM scenarios. 12

HSCP Trigger with RPC Detector Upgrade

- Slow-moving particles will arrive with a delay depending on their speed.
- This time delay, measured by each RPC layer crossed by the HSCP, can be exploited in order to trigger on and reconstruct such particles.

Novel ideas for CMS L1 trigger in the Barrel

Muon like HSCP (high β)

Muon like HSCP (lower β)

Time of Flight (ToF) to be able to distinguish different β !

Feasibility study is ongoing using 40 MHz L1 trigger scouting data

	Time to travel (ns)		Bx window (25 ns)
β (v/c)	1 meter	7,4 meters	for 7,4 meters
0,1	33,4	246,8	9
0,2	16,7	123,4	4
0,3	11,1	82,3	3
0,4	8,3	61,7	2
0,5	6,7	49,4	1
0,6	5,6	41,1	1
0,7	4,8	35,3	1
0,8	4,2	30,9	1
0,9	3,7	27,4	1
1	3,3	24,7	0

Novel ideas for CMS L1 trigger in the Endcaps

ToF can be used as a seed for a search of an HSCP particle in the previous Bx.

Conclusions

- The RPC upgrade will allow to achieve a high trigger efficiency in the Phase 2 of the CMS experiment.
- The additional hits in the new iRPC detectors, combined with the upgrade of the new link system will allow to improve L1 trigger algorithms to efficiently triggering on HSCP even in the harsh environment of the HL-LHC.

Backup slides

DT TPs: Time Resolution

Caption:

The timing distribution of the trigger primitives associated with a generated muon with DT Analytical Method (AM) and DT AM + RPC for the station 3 and wheel -2 (MB3 W-2). It is independent from the different sectors of a chamber. It shows that for the DT+RPC super-primitives, in blue, time distribution has better resolution, as you can notice in the standard deviation (σ) value.

Caption:

Plot showing the efficiency in bins of generated η . The generated η is extrapolated to station 2 (st2). The plot shows the different values of the EMTF efficiency with (blue circle) and without (red square) the (i)RPC information added to the algorithm for the case of a SingleMuon sample (50k events) generated with an average PileUp (<PU>) of 200. The algorithm was not optimized to account for the absence of the individual subsystems. This sample was produced with a flat p_{π} distribution between 0 and 200 GeV. The contribution of iRPC starts for $|\eta| > 1.8$, so that significant dips in efficiencies are seen around 2 and 2.2 for the case without the (i)RPC subsystem.

The increase in efficiency, compared to the PU=0 case, for the case without (i)RPC in the 1.55 < GEN $|\eta_{eta}|$ < 1.6 bin is due to the sample differences. 19

HSCP Trigger with RPC Detector Upgrade

- Slow-moving particles will arrive with a delay depending on their speed.
- This time delay, measured by each RPC layer crossed by the HSCP, is exploited in order to trigger on and reconstruct such particles.

The speed of muon-like particles and the time (bunch crossing) of their origin will be computed with a fast algorithm to be implemented in the Level-1 trigger at the HL-LHC.

The upgrade of the RPC system will allow the trigger and identification of slowly moving particles by measuring their time of flight to each RPC station with a resolution of O(1) ns.

HSCP Trigger with RPC Detector Upgrade

- The upgraded RPC Link Board System will allow for the triggering, at the correct bunch crossing, on possible HSCPs with velocities as low as $\beta \sim 0.25$.
- The current CMS-HSCP Phase 1 trigger performs well down to $\beta \approx 0.75$.

A particle-speed measurement resolution is shown for the case of 25 ns signal sampling time (Phase 1) and 1.56 ns sampling time provided with the upgraded RPC Link Board System

 Possible improvements for this trigger proposal in the β measurement could be achieved by matching tracks in the track trigger to the HSCP muon trigger.