

CMS iRPC readout electronics

Maxime Gouzevitch on Behalf of CMS Collaboration

IP2I, Lyon, France

1) iRPC project for HL-LHC

2) FEB design

3) FEB certification, calibration and production

CNIS

1) iRPC project for HL-LHC

11/09/2024

M. Gouzevitch: iRPC front-end board readout electronics. RPC2024

1.1) iRPC project for HL-LHC phase

4 stations of 18 trapezoidal chambers complementing the Forward Muon Spectrometer in the most forward rings :

- Sub-ns timing resolution
- High background capability up to 2 kHz/cm²
- Requires an innovative FEB with low sensitivity threshold (below 50 fC), an excellent timing resolution, and high transmission rate.

2) FEB design

2.1) History of the FEB

First proto

2017 proof of principle for CMS-MUON-TDR-016

2 PetiROC2A + FPGA Cyclone II + ETHERNET directly on strip PCB (50 cm)

Feb V0 2018 First FEB (Conf. note)

1 PetiROC2A + MEZZANINE with FPGA Cyclone II + ETHERNET

Feb V1 2019 FEB without mezzanine

2 PetiROC2B + FPGA Cyclone V + ETHERNET

Feb V2_1,2 2021 Non-rad hard for iRPC Demo

6 PETIROC2C + 3 FPGA Cyclone V + Optical GBT

Feb V2_3 2021 Mass production prototype

FEBv2_1 + firmware update feature by optical GBT

M. Gouzevitch: iRPC front-end board readout electronics. RPC2024

2.2) FEBv2 details

- > 2 FEBs / Chamber → 144 (+16 spares) FEBs in total
- ➤ 3 Erni connectors with 32 channels each.
- ➢ 6 ASIC PetiROC2C (PR2C):
 - Specially designed by OMEGA group for CMS RPC project based on Petiroc2A
- ➤ 3 FPGAs (96 + 6 TDC channels)
 - FEBv2: CYCLONE V (non rad-hard)
- CERN ASICS: GBTx + GBT-SCA + VTRx
 o for the communication ald slow control
- Separated 2V and 4V power zone for Analog and Digital components. Latchup protection (Overcurrent detection).

2.4) ASIC – Petiroc or iRPCROC

PETIROC2A designed for PET

- High frequency preamp
- **-** Thr > 60 fC
- Time resolution < 100 ps
- Limitations: low rate expected

https://dx.doi.org/10.1109/NSSMIC.2018.8824464

PETIROC2A for RPC :

- Retriggering and interchannels cross-talk
- Thr > 100 fC
- Time resolution < 200 ps

PETIROC2B modif for iRPC :

- Reduce preamp. frequency
- Thr ~ 100 fC
- 10-20 ns / ASIC dead time introduced to remove retriggering
- \rightarrow 2-3% efficiency loss / chamber

iRPCROC (PETIROC2C) :

- Removed useless components from PR2A.
- Thr < 50 fC
- 40 ns auto-reset / channel te remove retriggering.
- 864 (+ 96 spares) required,
 a set of 1300 available with
 uniform behaviour.

2.5) Radiation hardness

2.5) Radiation hardness

Functional certification :

No persistant radiation damage is observed on any components of the FEB for the doses under consideration :

 \rightarrow performences of the FEB doesn't change with accumulated dose.

• Petiroc :

No Single Events Upsets (SEU) observed in Petiroc2C

• Power supply :

Few Single Event Latchups (SEL) observed in power supply well catched by the overcurrent protection.

• Cyclone V :

 \rightarrow We estimate that during HL-LHC phase 1 Cyclone V needs a soft reset (1 second) every 10 hours of CMS data-taking.

 \rightarrow Soft reset can be performed in a transparent way for CMS data taking and trigger.

• Mass production :

The first prototype of FEBv2_3 passer successfully the test in CHARM to certify all the components from the lot used for mass production.

3) Certification, calibration and production

M. Gouzevitch: iRPC front-end board readout electronics. RPC2024

3.1) FEB pedestal alignement method

M. Gouzevitch: iRPC front-end board readout electronics. RPC2024

3.2) FEB calibration

DAC T vs Charge Measurement setup considerations

3.3) FEB calibration

- Signal generator (left)
- Attenuator (center low)
 - Injected signal (right): Yellow – signal before capacitor Green – signal after capacitor and attenuator.

3.2) FEB calibration

• 1 ns rising time

• 2.5 ns rising time

3.2) FEB calibration

Typical RPC rising time : 1.8-2. ns Calibration factor = 4.2-4.3 fC/DAC

Threshold: Specification 10 DAC \Leftrightarrow 42-43 fC \rightarrow Safe operating WP 7 DAC \Leftrightarrow 29-30 DAC \rightarrow Can be used to reduce current in chambers

CMS Preliminary

Injector

68 % Confidence Interval

calibration factor = 0.63 (t - 2.5) + 4.62

20

25

Calibration factor (fC/DAC)

4.0

3.5

3.0 + 0.5

10

1.5

CERN 904 Lab

40

Rising Time (ns)

4 5

 $\sigma_{cf}^2 \cdot 10^4 = 5.4(t-2.5)^2 + 1.0(t-2.5) + 3.3$

35

30

3.3) TDC time resolution

Pure TDC time resolution was measured using 2 channels test and a reference

3.3) Chamber absolute time resolution

- 2 chambers iRPC chambers in test beam in Gamma Irradiation Facility (GIF++) at SPS CERN.
- Absolute time resolution of the system : 780 ps \rightarrow per chamber 780/ $\!\sqrt{2}$ ~ 550 ps

CMS

3.4) Space resolution

- A cosmic telescope is made of 2+2 RPC chambers with 1x1cm² pads.
- iRPC chamber in sandwitch.
- Comparing extrapolated track and actual position of the RPC hit.

3.5) Space resolution

3.6) Mass production

Production of 160 is done by French company FEDD :

- 1) PCB production : SOMACIS
- 2) Stuffing + QC factory : FEDD
- 3) Functional QC1 at IP2I on test bench
- 4) QC on final chamber at CERN

Production successfully started in July 2024 with 16 prototypes. End of mass production expected in October 2024.

CONCLUSIONS

- iRPC FEB desinged/certified, integrated into the chamber. Mass production of 160 FEB expected in October 2024.
- The rad tolerance of the FEB are sufficient for project requirements
- Time and threshold calibration finalised and caracteristics meets the HL-LHC requirements :
 - Threshold : below 50 fC (down to 30 fC)
 - Space resolution :

1.6 cm along strip, 0.4 cm perp. to strip

- Time resolution : 500 ps

Validation en radiation gamma

Caliope a ENEA Casaccia a côté de Rome

FEBv2 logical scheme

M. Gouzevitch: CMS iRPC FEB development and validation

Expected Fluence and Dose at HL-LH

Expected fluence and dose (RE34/1 FEBs)

- at R=303 cm for RE3/1 is ~4.3 (5.8) x10¹¹ n/cm², and
- at R=304 cm for RE4/1 it is about 6.2 (8.2) x10¹¹ n/cm²,
- at R=303 cm for RE3/1 is ~10 (13.6) Gy
- at R=304 cm for RE4/1 it is about 18 (24) Gy
- where R=303 (304)cm are the expected FEB positions

Expected fluence and dose (Balcony)

- The total irradiation fluence 800 x 10⁹ cm⁻²
- Maximum integrated dose is about 10 Gy

Behzad Boghrati, Radiation Hardness of Electronics for Phase-2 Upgrade of RPC Muon System, RPC Workshop, 31 Aug. – 1 Sep 2020

2.8) Extrapolation to HL-LHC

Estimation using flux (same method used for LB ESR)

at the

Estimation using fluence

	CHARM	HL-LHC (continuous data taking at max intensity for 1 day)	(HEH+ThN)/SEU from CHARM	(HEH+ThN)/year at HL-LHC (10 years of data taking)	SEU/year
Flux (HEH+ThN) (/cm²/s)	4.2e5	5.6e3	210e6	3.2e10	150/year
SEU	1/8.2 mn	<mark>1 / 10.3 h</mark> 2.3 / day	 Among these stops only a fraction would require an FPGA power cycle (see slide 14). 1500 FPGA power cycles in full FEB life. During CHARM tests we performed around 3000 EPGA power cycles without problems 		

3.6) FEB power consumption

Total consumption: 2V*6.3A+4V*2.3A = 22 W

Cooling system

- 1) Thermal pads + copper plate
- 2) Cooling pipe
- 3) Cool water: 15 C

Max temperature < 50 C

Play also the role of grounding plane

FPGA

Hottest elements:

- linear regulators Ohmic effect
- Optical communication
- FPGA logic

Requested: 17 Gy

Certified:

- FPGA Cyclone V (50 Gy):
- Petiroc (160 Gy);
- Power supply zone (100 Gy)
- Safety Factor: 3 9

<u>TNID</u> (neutrons) - Facility FNG Frascati, with support from RADNEXT March 2022 Requested: 6e11 neq1MeV/cm²:

Certified: 25e11 neq1MeV/cm²: SF: 4

3) <u>Neutron flux</u> -

11/09/2024

1)

Requested: 10e3 neq1MeV/cm²/s Certified: 450e3 neq1MeV/cm²/s SF: 45

TID (y's) -- Facility ENEA Casaccia Calliope ⁶⁰Co July 2022