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The Compact Muon Solenoid for HL-LHC
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Images: CERN Document Server courtesy

CMS is under Run III data taking phase and is preparing for 
the High-Luminosity (HL-LHC) period starting in 2029, 
anticipated to feature a higher Instantaneous Luminosity3



4Muon Upgrade TDR

CMS iRPC for LHC Phase-II Upgrade

Hottest point 
~ 700 Hz/cm2

CERN Document Server courtesy
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New generation of RPCs under 
assembly and quality control, to 
be installed for Run 4 data taking in 
the forward region of CMS endcap

Standard gas mixture of (i)RPC:

95.2% C2H2F4 + 4.5% iC4H10 + 0.3% SF6

https://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf
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New generation of RPCs under 
assembly and quality control, to 
be installed for Run 4 data taking in 
the forward region of CMS endcap

Standard gas mixture of (i)RPC:

95.2% C2H2F4 + 4.5% iC4H10 + 0.3% SF6

“Innovative Resistive Plate Chambers for the CMS Phase 2 Upgrade: Project 
Summary, Construction, and Quality Assurance”

Talk by Jules Vandenbroeck

https://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf


The Greenhouse emission in EU and at CERN
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CERN Fluorinated Gases (F-Gas) Policy (July 24th, 2024):

● minimize the use of F-Gases at CERN, particularly by:

○ the promotion of research and development into F-Gas alternatives,

○ the replacement, to the extent possible, of F-Gases already used in its installations and 

activities with gases with no - or less - impact on the environment, and

○ the minimization, to the extent possible, the use of F-Gases in new installations and activities.

● limit its emissions of F-Gases, particularly by:

○ the prohibition of intentional releases,

○ the detection and reduction of leaks,

○ appropriate training of personnel concerned.

● monitor and manage the use and emissions of F-Gases within the Organization,

● establish and update appropriate internal procedures and regulations and monitor compliance with them,

● communicate proactively,

● collaborate with the Host States.

● European Union has set targets to reduce greenhouse gas (GHG) 
emissions by 55% by 2030 and achieving net-zero emissions by 
2050. The European Green Deal.

● The use of fluorinated gases (F-gases) like  C2H2F4 is tightly 
regulated due to their high global warming potential (GWP).

● Around 90% of direct emissions come from experiments, where 
more than 78% of GHG emission is a direct result of the use of 
F-gases. CERN Environment Report 2021-2022.
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28% reduction by the 
end of Run3 w.r.t. 2018 

https://home.cern/news/official-news/cern/cern-publishes-its-first-f-gas-policy
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://hse.cern/environment-report-2021-2022/emissions


Strategies for F-gases reduction in CMS-RPC
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Gas RecuperationGas Recirculation

Since LHC started

Stable performance
80 % efficiency in the 

recuperation of C2H2F4 

Operational since 
July 2023

Gas Leak Repair

New procedure 
successfully applied 
during YETS 23/24

Leak repair campaign 
during LS2

Massive repair 
campaign to be 

addressed in the next 
(E)YETS/LS

SF6 recuperation under 
R&D studies ongoing

Alternative Gases

HFO-1234ze + CO2 C2H2F4 + CO2

Possible long term 
solution

Performance slightly 
affected

Longevity studies 
ongoing

”New RPC Gas Mixtures for Sustainable 
Operation in the CMS Experiment”

Talk by Dayron Ramos

Mid-term plan for 
C2H2F4 mitigation

Results in the next 
slides!

”R134a recuperation and SF6 
recuperation plants: status and plan”

Talk by Roberto Guida

https://www.sciencedirect.com/science/article/pii/S0168900224007150
https://indico.cern.ch/event/1354736/contributions/5986412/
https://indico.cern.ch/event/1354736/contributions/5986412/
https://indico.cern.ch/event/1354736/contributions/6057013/
https://indico.cern.ch/event/1354736/contributions/6057013/


CO2 -based mixtures
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Gas components (%) C
2

H
2

F
4 

CO
2

i-C
4

H
10 

SF
6 

GWP*
MIX

GWP 1430 1 3 22800

Density (g/L) 4.7 1.98 2.7 6.61

STD 95.2 0 4.5 0.3 1486

30% CO
2 

+ 1.0 % SF
6

64 30 5 1 1529

30% CO
2 

+ 0.5 % SF
6

64.5 30 5 0.5 1337

40% CO
2 

+ 1.0 % SF
6

54.5 40 5 1 1353

● The mixtures used replaces C2H2F4 by 30 - 40 % of  CO2 , increasing SF6 to 0.5 - 1.0 % in order to 
decrease the streamer probability, as shown in previous EP-DT studies.

● The price of the mixture is reduced around 30 - 40 % and the CO2-e (exhaust volume related) 
is decreased around 15 - 26 %

● C2H2F4  partially replacement by CO2 also lead to less HF- ions produced due to ionization, 
meaning a possible mitigation in the chemical aging of the bakelite gaps

Charge distribution

https://doi.org/10.1016/j.nima.2023.168088

https://www.sciencedirect.com/science/article/pii/S0168900223000785
https://doi.org/10.1016/j.nima.2023.168088


Experimental Setup: Gamma Irradiation Facility (GIF++)
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● 100 m² bunker with 11.5 TBq 137Cs (Jan 24) 
● 2 symmetric radiation field with an attenuator system with 

different absorption factors
● H4 beam line from SPS
● Muon beam 100 GeV/c, 104 muons / spill, every 400 ms
● Service zone with electronics and gas room
● Special gas line with CO2-based mixture from the mixer in 

the gas room
● Largely used for muon detector system of LHC experiments 

in the view of  HL-LHC



Experimental Setup: iRPC prototype and electronics
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HV cables

Gas supply and return

Gas mixer and humidifier (40% RH) 
in the gas service zone

Front End 
Board

CAEN Module A1526N in EY 1527 
mainframe at service zone

CAEN multihit 
time-to-digital-converter 
(TDC) V1190A to V1718 
bridge in the VME crate

Muon trigger (10 x 10 
cm² coincidence area)iRPC prototype

WebDCS PC for data 
storage/analysis and 

web-interface page for 
data taking automation 

and preliminary analysis

iRPC Prototype 

● Customized chamber with gaps from KODEL laboratory
● Made with copper tape strips plane (~1.8 cm pitch), 
● double 1.4 mm 50 x 50 cm²  gap
● 1.4 mm electrode HPL thickness
● 𝜌 ~ 1.2 (1.3) x 1010   Ω.cm for bottom (top) gap
● single strip plane readout with 16 strips

Y-field upstream

LV ±5 V 
supplier

 HV control, gas and 
environmental 

parameters monitoring

Front-end Board (FEB): 

● Customized electronics also from KODEL
● Current sensitive mode for input signals 
● Input impedance = 20 Ω
● Amplification gain = 200
● LVDS width = 60 ns
● Threshold 0.5 mV ~ 60 fC

~3m from the source



Background window 11
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Analysis strategy 
● Muons arrive in spills with a well-known 

frequency, while gamma contributions are 
homogeneous in both space and time

● Muon window is defined by a gaussian fit

● Hits outside the muon window are identified 
as background (noise/gamma), used to 
obtain the background rate

● Background contamination is removed during 
efficiency calculation using a window outside 
the muon hits

● Clusterization algorithm: a cluster (muon or gamma) is 
defined as the hits in adjacent strips inside a time window
 

● The time window is obtained with source OFF targeting a 
number of muon cluster per event equal to one

● It was found to be around 30 ± 5 ns

● Cross check with gamma clustering at low background rate

Muon window (all hits)
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Analysis strategy 
HV applied is PT corrected, as here

● Efficiency in each point is calculated using 
the method in previous slide

● S-curve is fitted by a sigmoid function

● Working point defined as the HV where 
efficiency is 95% + 150V:

Validation with standard gas mixture: 
WP consistent around 7.2 kV and efficiency > 90 % up to 2 kHz/cm2 

(HL-LHC x 3)

https://cds.cern.ch/record/2842381/files/CR2022_226.pdf
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Results before the irradiation campaign 

All gas mixtures within the expectations with minor drop in efficiency due 
to the replacement of C2H2F4 by CO2

Overall efficiency drop (~ 4%) due to electronics dead time (~80 ns)

30% CO2 + 1.0 % SF6
WPsource OFF~ 7008 V

30% CO2 + 0.5 % SF6
WPsource OFF ~ 6960 V

40% CO2 + 1.0 % SF6
WPsource OFF ~ 6999 V
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Results before the irradiation campaign 

● Minor muon efficiency drop with the increase of CO2
  

● Different Working Point in different mixtures:
○ CO2 addition lower mixture density: lower WP
○ SF6 has high electronegativity: higher WP

All the alternative mixtures 
show lower WP w.r.t the 

standard one!
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Results before the irradiation campaign 

Muon and gamma cluster size are consistent between 
the gas mixtures

→ SF6 might be playing the role!

However, chamber resolution (1.8 cm chamber width) 
is not the same of CMS-iRPC chambers 

→ further refinements are needed!

Background 
gamma rate 

(Hz/cm2)

Average Muon 
Cluster Size

Average 
Gamma 

Cluster Size

0 2.0 strips —

800 1.75 strips 1.7 strips
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Results after the irradiation campaign 

● During no beam period, a dedicated 
irradiation campaign took place at GIF++
 

● It was collected around 40 mC/cm2, 
corresponding to ~ 4 % of what is expected 
during HL-LHC within a safety factor 3

● Revalidation with standard gas mixture:

○ Consistent and stable efficiency 
and Working Point (~ 30 V higher) for 
moderate background rate

○ Drop in efficiency for high background 
rate, mostly driven due to the FEB 
aspects, which is not designed for 
that high radiation environment
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Results after the irradiation campaign 

Consistent efficiency (same drop in background rate observed) and working 
point for different mixtures under background gamma rate up to 2 kHz/cm2

30% CO2 + 1.0 % SF6
WPsource OFF ~ 7020 V

30% CO2 + 0.5 % SF6
WPsource OFF ~ 6880 V

40% CO2 + 1.0 % SF6
WPsource OFF ~ 6940 V

Only up to 1 kHz/cm2 
due to lack of time
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Results after the irradiation campaign 

No change in the efficiency without radiation, 
but < 90% for 2 kHz/cm2 (mostly FEB drive, no gas mixture related)
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Results after the irradiation campaign 

Background 
gamma rate 

(Hz/cm2)

Average Muon 
Cluster Size

Average 
Gamma 

Cluster Size

0 2.0 strips —

700 1.75 strips 1.6 strips

No difference between CO2 based 
mixtures and also no changes w.r.t the 

results before irradiation!
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Comparison 

● No change in the working point after irradiation campaign

● Drop in efficiency with background similar before/after irradiation for moderate rates

● Current is shown to be ~20% higher for  CO2  based mixtures, with similar results after and 
before irradiation
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Conclusion and next steps

● First results of an iRPC prototype with double 1.4 mm gap with CO2 
based gas mixtures

● Similar efficiency and lower working point for all CO2 based gas mixtures 
tested w.r.t the standard one

● Integrated charge around 4% of what is expected at HL-LHC x 3
● No efficiency degradation related to the gas mixture was observed

○ Efficiency drop is electronics related, similar for all tested mixtures
● No change in the working point was observed
● No change in the muon and gamma cluster size was observed
● 20 % higher currents for CO2 based mixtures - no change with radiation

Studies will continue at GIF++ with the aim to integrate more charge during 
irradiation campaign, perform further studies, as timing resolution, and 

investigate better the efficiency drop observed 
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Thanks for your attention
Questions?
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Backup
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Experimental Setup: iRPC prototype and electronics

Chamber strip plane with copper tape example

iRPC prototype opened and KODEL electronics

Adapted LV ±5 V supplier
TDC and VME bridge


