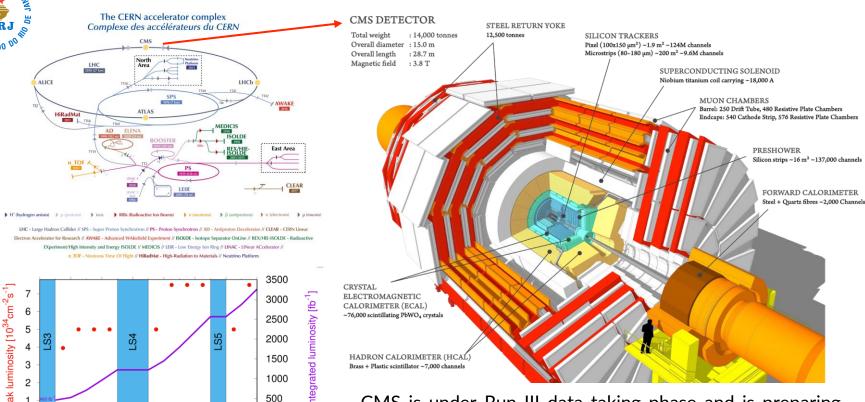


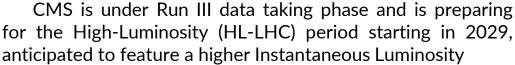
Performance and longevity of CO2 based mixtures in CMS Improved Resistive Plate **Chambers in the HL-LHC environment**

João Pedro Gomes Pinheiro ¹, Thiago Rangel ², Lucía Eiriz Sánchez ³

¹ Rio de Janeiro State University - Brazil

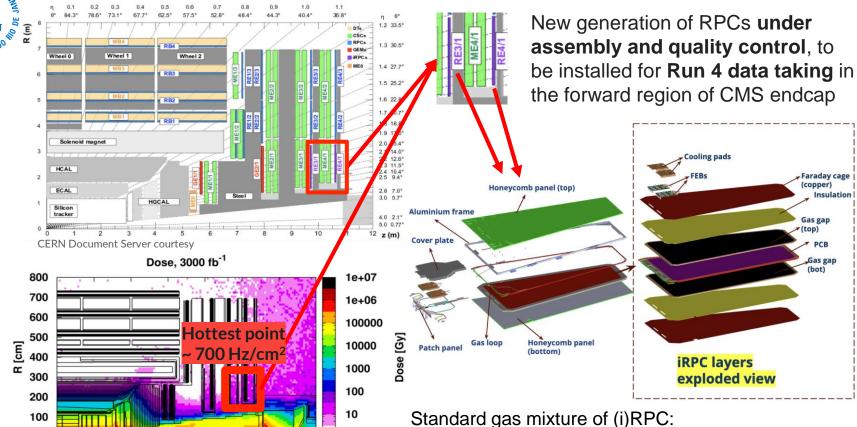
- ² CERN Summer Student 2024
- ³ Dundee University Scotland




Outline

- The Compact Muon Solenoid (CMS) for the HL-LHC
 - iRPC for LHC Phase-II Upgrade
- The Greenhouse emission in EU and at CERN
 - Strategies for F-gases reduction in CMS-RPC
- CO2 based mixtures
- Experimental Setup
 - Gamma Irradiation Facility (GIF++)
 - iRPC chamber prototype and electronics
- Analysis strategy
- Results before and after irradiation campaign
- Conclusion and next steps

The Compact Muon Solenoid for HL-LHC

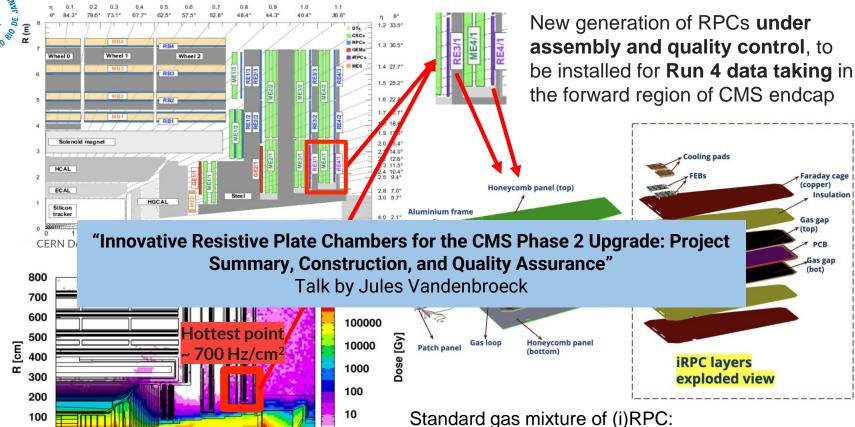


Images: CERN Document Server courtesy

2028 2030 2032 2034 2036 2038 2040 2042

Year

CMS iRPC for LHC Phase-II Upgrade


 $95.2\% C_2H_2F_4 + 4.5\% iC_4H_{10} + 0.3\% SF_6$

4

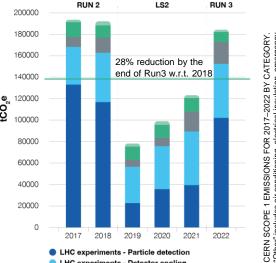
Z [cm]

CMS iRPC for LHC Phase-II Upgrade

 $95.2\% C_2H_2F_4 + 4.5\% iC_4H_{10} + 0.3\% SF_6$

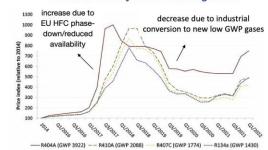
5

Z [cm]

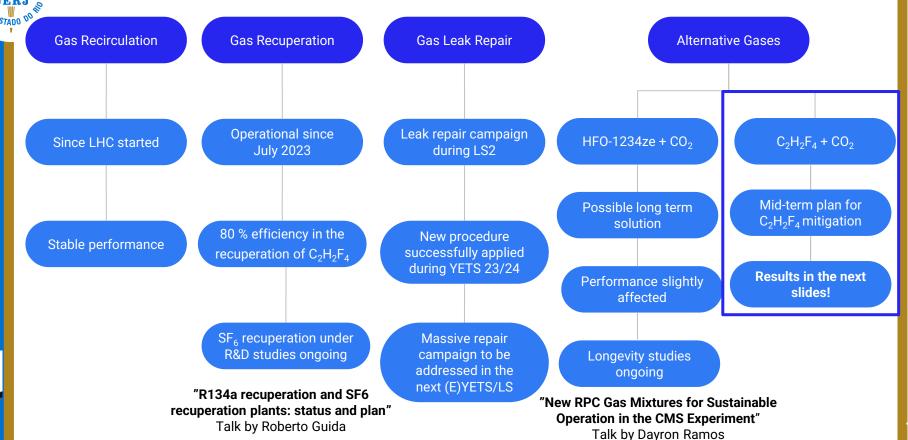


The Greenhouse emission in EU and at CERN

- European Union has set targets to reduce greenhouse gas (GHG) emissions by 55% by 2030 and achieving net-zero emissions by **2050**. The European Green Deal.
- The use of fluorinated gases (F-gases) like $C_2H_2F_4$ is tightly regulated due to their high global warming potential (GWP).
- Around 90% of direct emissions come from experiments, where more than 78% of GHG emission is a direct result of the use of Fgases. CERN Environment Report 2021-2022.

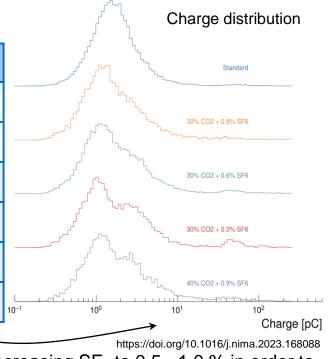

CERN Fluorinated Gases (F-Gas) Policy (July 24th, 2024):

- minimize the use of F-Gases at CERN, particularly by:
 - the promotion of research and development into F-Gas alternatives,
 - the replacement, to the extent possible, of F-Gases already used in its installations and activities with gases with no - or less - impact on the environment, and
 - the minimization, to the extent possible, the use of F-Gases in new installations and activities.
- limit its emissions of F-Gases, particularly by:
 - the prohibition of intentional releases,
 - the detection and reduction of leaks,
 - appropriate training of personnel concerned.
- monitor and manage the use and emissions of F-Gases within the Organization,
- establish and update appropriate internal procedures and regulations and monitor compliance with them,
- communicate proactively.
- collaborate with the Host States.


Target: max 138 300 tCO_ae

Average purchase prices of the most commonly used HFC refrigerants

Strategies for F-gases reduction in CMS-RPC

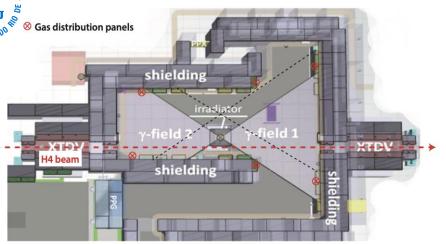


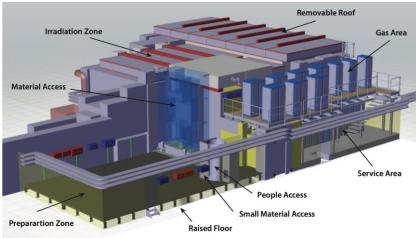
7

UERJ ESTADO NO RE

CO₂-based mixtures

Gas components (%)	C ₂ H ₂ F ₄	CO ₂	i-C ₄ H ₁₀	SF ₆	GWP* _{MIX}
GWP	1430	1	3	22800	
Density (g/L)	4.7	1.98	2.7	6.61	
STD	95.2	0	4.5	0.3	1486
30% CO ₂ + 1.0 % SF ₆	64	30	5	1	1529
30% CO ₂ + 0.5 % SF ₆	64.5	30	5	0.5	1337
40% CO ₂ + 1.0 % SF ₆	54.5	40	5	1	1353

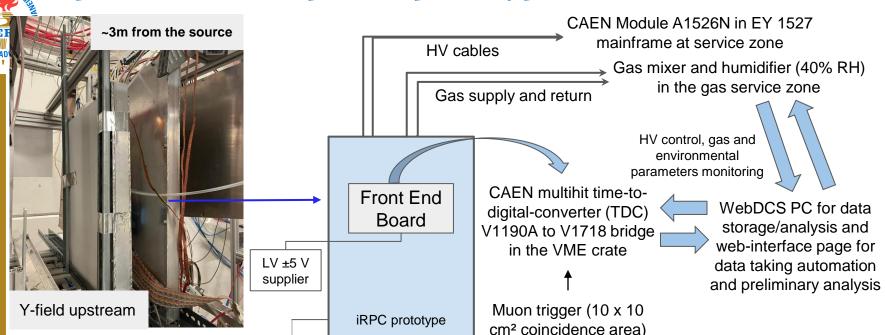



- The mixtures used replaces C₂H₂F₄ by 30 40 % of CO₂, increasing SF₆ to 0.5 1.0 % in order to decrease the streamer probability, as shown in previous EP-DT studies.
- The price of the mixture is reduced around 30 40 % and the CO2-e (exhaust volume related) is decreased around 15 26 %
- C₂H₂F₄ partially replacement by CO₂ also lead to less HF- ions produced due to ionization, meaning a possible mitigation in the chemical aging of the bakelite gaps

Experimental Setup: Gamma Irradiation Facility (GIF++)

PMT4

PMT 3


PMT 2

- 100 m² bunker with 11.5 TBq ¹³⁷Cs (Jan 24)
- 2 symmetric radiation field with an attenuator system with different absorption factors
- H4 beam line from SPS
- Muon beam 100 GeV/c, 10⁴ muons / spill, every 400 ms
- Service zone with electronics and gas room
- Special gas line with CO2-based mixture from the mixer in the gas room
- Largely used for muon detector system of LHC experiments in the view of HL-LHC

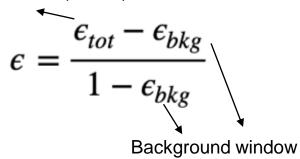
Experimental Setup: iRPC prototype and electronics

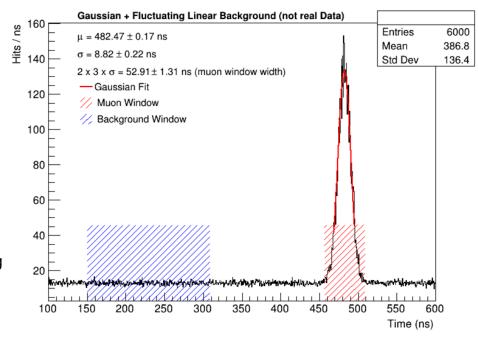
iRPC Prototype

- Customized chamber with gaps from KODEL laboratory
- Made with copper tape strips plane (~1.8 cm pitch), double 1.4 mm 50 x 50 cm² gap
- 1.4 mm electrode HPL thickness
- $\rho \sim 1.2 (1.3) \times 10^{10} \Omega$.cm for bottom (top) gap
- single strip plane readout with 16 strips

Front-end Board (FEB):

- Customized electronics also from KODEL
- Current sensitive mode for input signals
- Input impedance = 20Ω
- Amplification gain = 200 LVDS width = 60 ns
- Threshold 0.5 mV ~ 60 fC





Analysis strategy

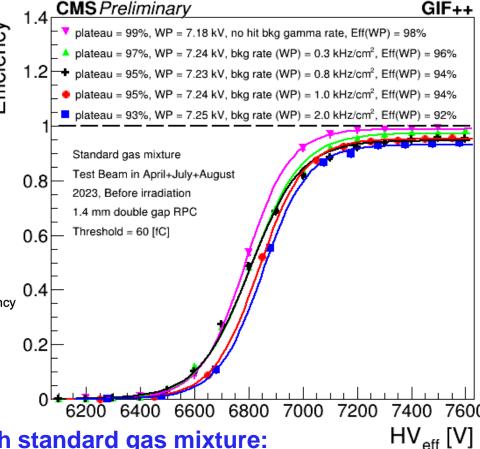
- Muons arrive in spills with a well-known frequency, while gamma contributions are homogeneous in both space and time
- Muon window is defined by a gaussian fit
- Hits outside the muon window are identified as background (noise/gamma), used to obtain the background rate
- Background contamination is removed during efficiency calculation using a window outside the muon hits

Muon window (all hits)

- Clusterization algorithm: a cluster (muon or gamma) is defined as the hits in adjacent strips inside a time window
- The time window is obtained with source OFF targeting a number of muon cluster per event equal to one
- It was found to be around 30 ± 5 ns
- Cross check with gamma clustering at low background rate

Analysis strategy

HV applied is PT corrected, as here
$$HV_{app} = HV_{eff} \left[(1 - \alpha) + \alpha \frac{P}{P_0} \frac{T_0}{T} \right]$$

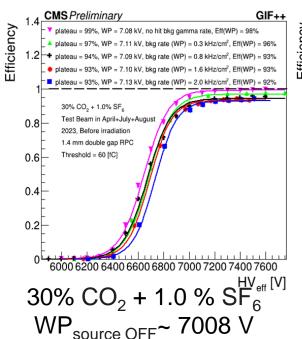

$$\alpha = 0.8 \ P_0 = 990 \ \text{mbar} \ T_0 = 293.15 \ \text{K}$$
• Efficiency in each point is calculated using
$$0.8 = 1.4 \ \text{M}$$

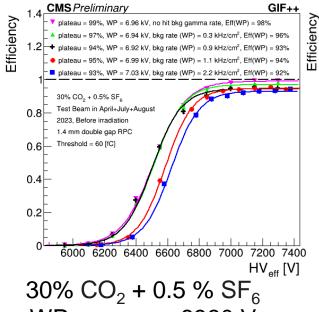
- Efficiency in each point is calculated using the method in previous slide
- S-curve is fitted by a sigmoid function

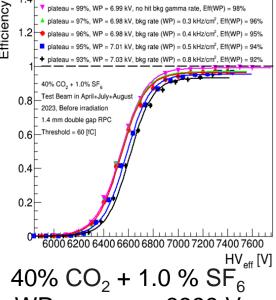
$$\epsilon = rac{\epsilon_{max}}{1 + e^{-\lambda \left(HV_{eff} - HV_{50\%}
ight)}} egin{aligned} \lambda : \text{Slope or steepness} \\ HV_{50\%} : HV_{\epsilon=50\%} \\ \epsilon_{max} : \text{maximum efficiency} \end{aligned}$$

Working point defined as the HV where efficiency is 95% + 150V:

$$WP = \frac{\ln 19}{\lambda} + HV_{50\%} + 150V$$




Validation with standard gas mixture:


WP consistent around 7.2 kV and efficiency > 90 % up to 2 kHz/cm² (HL-**LHC** x 3)

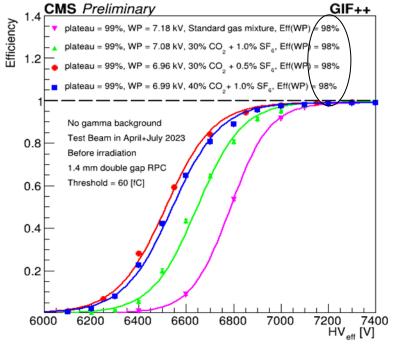
Results before the irradiation campaign

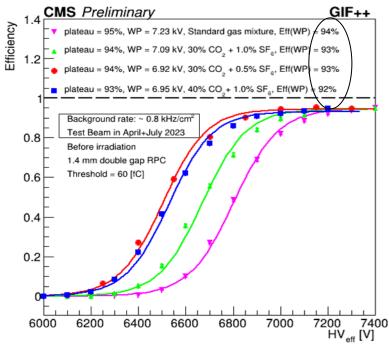
GIF++

CMS Preliminary

WP_{source OFF} ~ 6960 V

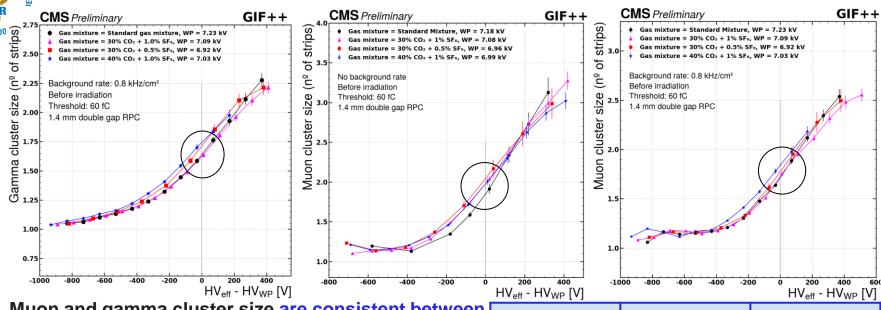
WP_{source OFF} ~ 6999 V




All gas mixtures within the expectations with minor drop in efficiency due to the replacement of C₂H₂F₄ by CO₂

Overall efficiency drop (~ 4%) due to electronics dead time (~80 ns)

Results before the irradiation campaign



- Minor muon efficiency drop with the increase of CO₂
- Different Working Point in different mixtures:
 - CO₂ addition lower mixture density: lower WP
 - SF₆ has high electronegativity: higher WP

All the alternative mixtures show lower WP w.r.t the standard one!

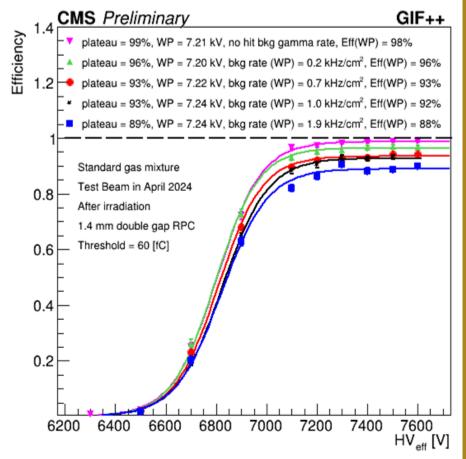
Results before the irradiation campaign

Muon and gamma cluster size are consistent between the gas mixtures

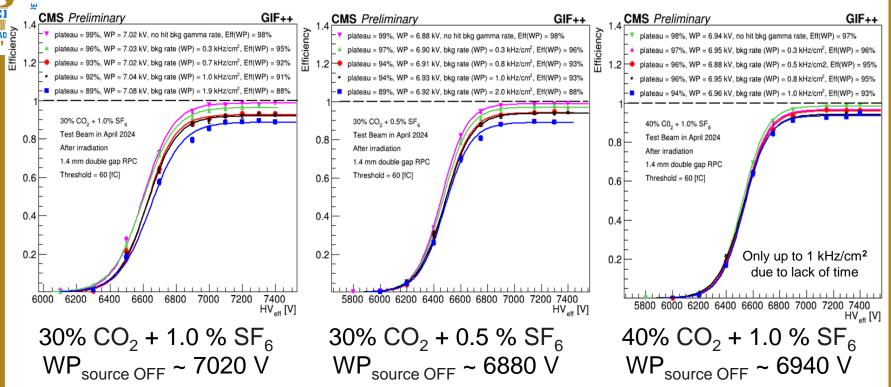
→ SF₆ might be playing the role!

However, chamber resolution (1.8 cm chamber width) is not the same of CMS-iRPC chambers

→ further refinements are needed!

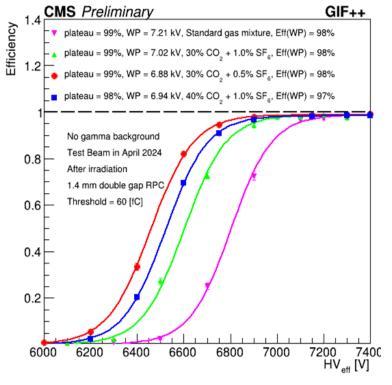

Background gamma rate (Hz/cm²)	Average Muon Cluster Size	Average Gamma Cluster Size
0	2.0 strips	_
800	1.75 strips	1.7 strips

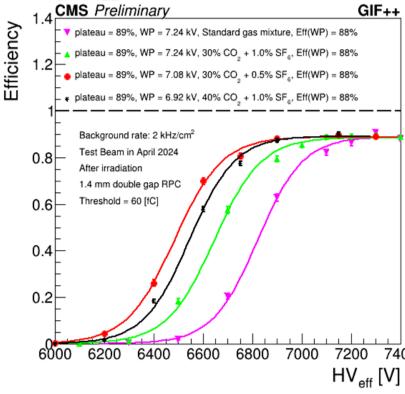
15



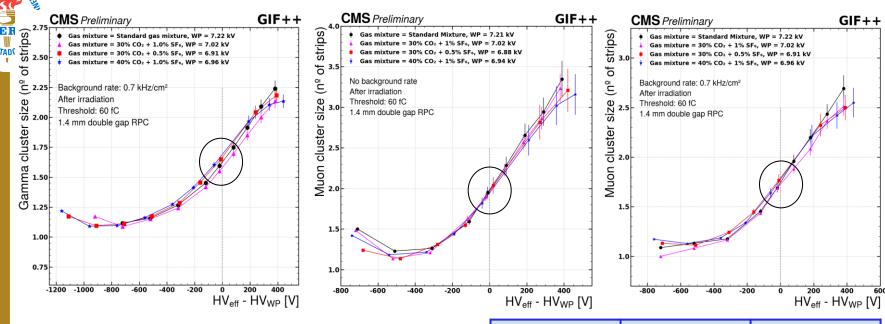
- During no beam period, a dedicated irradiation campaign took place at GIF++
- It was collected around 40 mC/cm², corresponding to ~ 4 % of what is expected during HL-LHC within a safety factor 3
- Revalidation with standard gas mixture:
 - Consistent and stable efficiency and Working Point (~ 30 V higher) for moderate background rate
 - Drop in efficiency for high background rate, mostly driven due to the FEB aspects, which is not designed for that high radiation environment

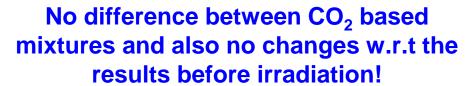
Results after the irradiation campaign





Results after the irradiation campaign

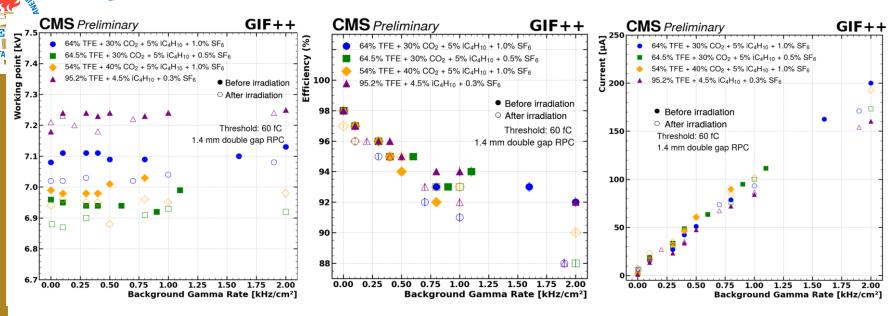




No change in the efficiency without radiation,

but < 90% for 2 kHz/cm² (mostly FEB drive, no gas mixture related)

Results after the irradiation campaign



Background gamma rate (Hz/cm²)	Average Muon Cluster Size	Average Gamma Cluster Size
0	2.0 strips	_
700	1.75 strips	1.6 strips

Comparison

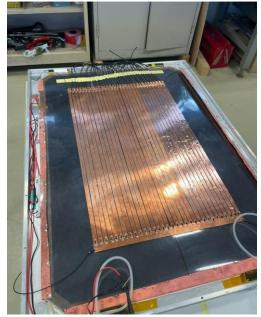
- No change in the working point after irradiation campaign
- Drop in efficiency with background **similar** before/after irradiation for moderate rates
- Current is shown to be ~20% higher for CO₂ based mixtures, with similar results after and before irradiation

Conclusion and next steps

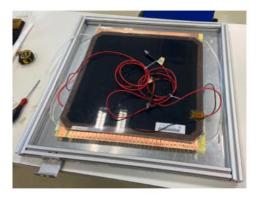
- First results of an iRPC prototype with double 1.4 mm gap with CO₂ based gas mixtures
- Similar efficiency and lower working point for all CO₂ based gas mixtures tested w.r.t the standard one
- Integrated charge around 4% of what is expected at HL-LHC x 3
- No efficiency degradation related to the gas mixture was observed
 - Efficiency drop is electronics related, similar for all tested mixtures
- No change in the working point was observed
- No change in the muon and gamma cluster size was observed
- 20 % higher currents for CO₂ based mixtures no change with radiation

Studies will continue at GIF++ with the aim to integrate more charge during irradiation campaign, perform further studies, as timing resolution, and investigate better the efficiency drop observed

Thanks for your attention Questions?



Backup



Experimental Setup: iRPC prototype and electronics

Chamber strip plane with copper tape example

iRPC prototype opened and KODEL electronics

Adapted LV ±5 V supplier

TDC and VME bridge

