

CMS RPC Non-Physics Event Data Automation

Anton Dimitrov

University of Sofia on behalf of CMS collaboration

RPC2024, XVII Conference on RPC Chambers and Related Detectors 9-13.Sep.2024, Santiago de Compostela, Spain

> Universidad de Ios Andes

The RPC non-physics event (a.k.a condition) data automation project started back in 2016 to boost:

- the RPC Current Taskforce initiated in June 2014 to investigate the RPC detector current evolution and determine possible reasons for the worrisome tendency in current increase
- the aging studies by developing an automate to integrate the RPC currents from the FWCAENCHANNEL table in the CMS_RPC_PVSS_COND database schema.

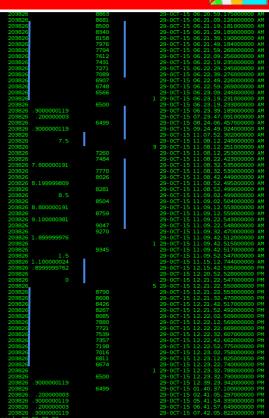
Later it was further developed to different studies of current dependancy on various parameters like instaneous luminosity and environmental data.

Finally, in 2023-2024 the paradigm was changed from hardware channel (DPID) to ChamberID and many new automates were created to populate new DB tables with chamber driven data.

New ML methods are applied for RPC current prediction

Initial Motivations

- Deeply study the RPC current dependence on different physical and environmental parameters such as LHC luminosity, gas channel flow, UXC relative humidity, UXC temperature, background radiation, HV board offset fluctuations etc...
- 2. Clean up ramp up spikes in stable monitored voltage big problem at that time on WBM tool for all DOC,DM,PFB shifters.
- 3. RPC aging studies are extremely important for future projection of detector performance
 - i. RPC Integrated Charge Studies
 - ii. RPC Detector Performance Studies



There were actually two main problems:

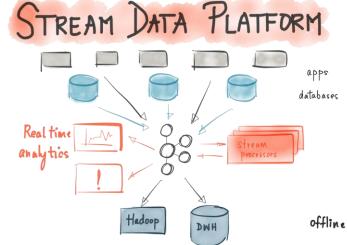
- A. The amount of information stored in the FWCAENCHANNEL table was simply impossible to work with just using direct interaction of SQL with the database.
- B. The information in this table was not synchronous, it was change based, i.e. only one parameter (Imon, Vmon, Status) was stored at a change for a given timestamp, all the other DPE are void.
- $A + B \rightarrow$ extremely heavy query which never finishes and even crashes the server.

Process information in very small chunks. Such that the database doesn't have any problems with the amount of information.

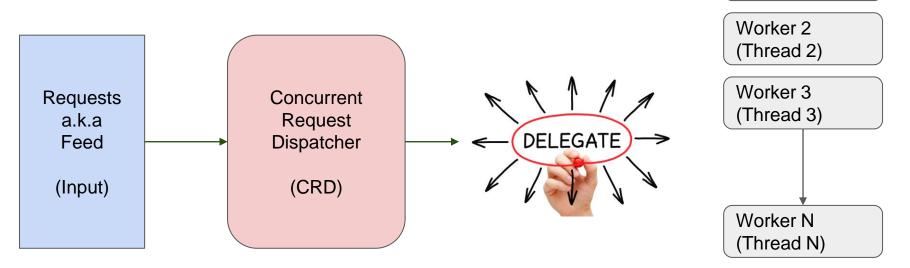
We decided to attack the problem by requesting the same query many many many times but with a small window (We request 1 day at a time the information). This basically translates to a lot of executions.

But for the database the density of the requests is not an issue, since it's designed to be a high demand service.

→ Define a method "Current Probe" with a very low CPU load, used as a backbone in the entire automation.


Working with big data it's very common to use streaming techniques because you only run over the information once and never store in memory or files large amounts of data.

The idea is to keep the flow moving.



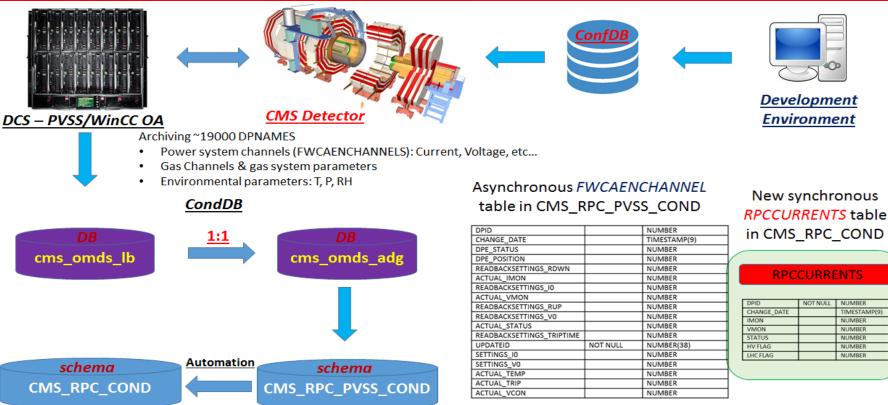
Automation Features: Multithreading

The automat would have to be a multithreaded algorithm because it would have to run for many parameters which could potentially take a lot of time. So you can spawn many threads to address multiple requests at the same time Worker 1

(Thread 1)

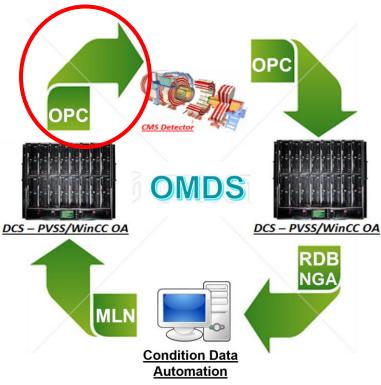
Evolved Motivations

- Data Synchronization: synchronize the raw data to obtain values for all important parameters like Vmon, Imon, Status for every single timestamp.
- <u>Data Tagging</u>: implement binary flag to tag every single current with HV status data (like Off, Offset, Standby, RPC ON) and combine with data from external tables like LHC luminosity and CMS Magnetic Field.
- Create a complete automation to retrieve, synchronize and analyse the raw data on the fly and to reorder and store the newly analysed data into different database tables defined to cover various RPC Current Related Tasks like
 - Integrated Charge
 - Current dependence on LHC Inst. Luminosity
 - Current dependence on Environmental Parameters
 - Current Evolution in time
 - HV Conditioning
 - HV Conditioning Fit
 - Dynamically define RPC SG/DG OM
 - Offset Subtraction

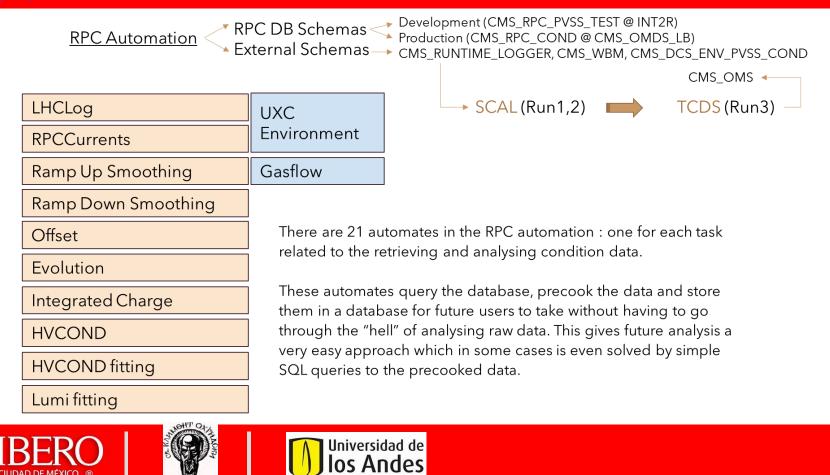


Realization

Ideology: Full Circle


- 5 Main Automates synchronizing raw data
 - ✓ UXC Environment (PVSS data)
 - RPC Gas Channel Flow (PVSS data)
 - LHC Blocks (PVSS data)
 - RPC Currents (PVSS data)
 - RPC Rates (root files from /rpctdata)
- RPC Current Studies with relational parameters
- RPC Rates Studies
- Virtual Objects: region, wheel/disk, station/ring, sector
 Objects can be conveniently defined to study the
 - behaviour along Z, R, ϕ in the CMS coordinate system
- Change of paradigm: chamber-centric architecture
- ML models for Current prediction

Main Features: Data Synchronization, Data Tagging, Relational Studies, Complete Automation, Full Circle



RPC Data Automation

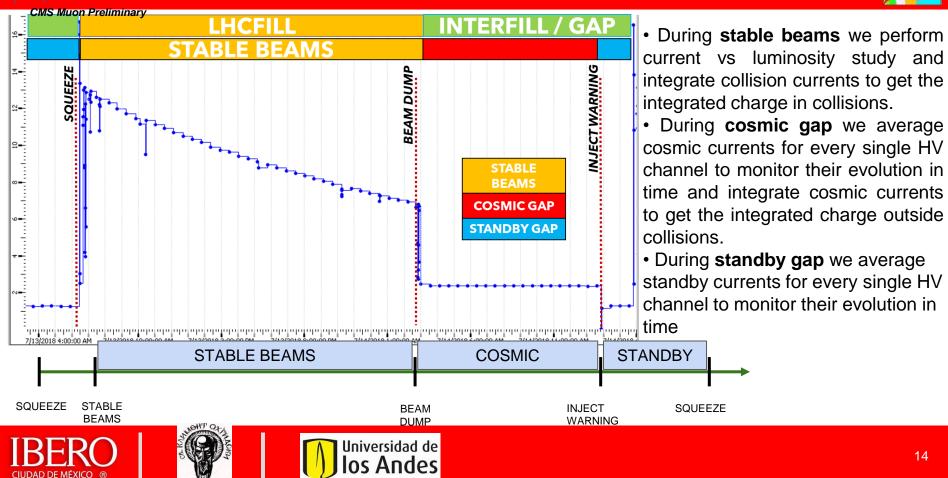
CIUDAD DE MÉXICO ®

UXC Environmental parameters like Pressure, Temperature, Dewpoint and Relative Humidity synchronized for every single timestamp.

CHANGE_DATE	PRESSURE	TEMPERATURE	RELATIVE_HUMIDITY	DEWPOINT
01-JAN-14 02.37.05.00000000 AM	964.62	19.94	26.5	2.22
01-JAN-14 04.37.06.00000000 AM	964.03	19.94	26.5	2.22
01-JAN-14 06.37.07.00000000 AM	963.74	19.94	26.5	2.22
01-JAN-14 08.37.08.00000000 AM	963.52	19.94	26.5	2.22
01-JAN-14 10.37.08.00000000 AM	962.2	19.94	26.5	2.22
01-JAN-14 12.37.09.00000000 PM	960.66	19.94	26.5	2.22
01-JAN-14 02.37.10.00000000 PM	959.71	19.94	26.5	2.22
01-JAN-14 04.37.11.00000000 PM	958.97	19.94	26.5	2.22
01-JAN-14 06.37.11.00000000 PM	958.02	19.94	26.5	2.22
01-JAN-14 08.37.12.00000000 PM	957	19.94	26.5	2.22
01-JAN-14 10.37.13.00000000 PM	956.41	19.94	26.5	2.22
02-JAN-14 12.37.13.00000000 AM	955.38	19.94	26.5	2.22
02-JAN-14 04.37.14.00000000 AM	954.14	19.94	26.5	2.22
02-JAN-14 06.37.16.00000000 AM	955.38	19.94	26.5	2.22
02-JAN-14 08.37.16.00000000 AM	956.63	19.94	26.5	2.22
02-JAN-14 10.37.17.00000000 AM	957.58	19.94	26.5	2.22
02-JAN-14 12.37.18.00000000 PM	958.24	19.94	26.5	2.22
02-JAN-14 02.37.18.00000000 PM	958.46	19.94	26.5	2.22
02-JAN-14 04.37.20.00000000 PM	958.83	19.94	26.5	2.22

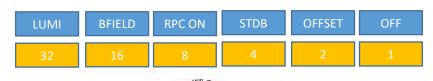
All 468 RPC gas flow cell flowIn and flowOut values have been synchronized to have both values for a single timestamp.

DPID	CHANGE_DATE	FLOWIN	FLOWOUT
16310	25-JUN-18 03.37.40.00000000 PM	31.6	30.7
16310	25-JUN-18 10.03.54.00000000 AM	31.5	30.3
16310	25-JUN-18 04.29.55.00000000 A M	31.5	30.5
16310	24-JUN-18 10.56.05.00000000 PM	31.5	30.7
16310	24-JUN-18 05.22.15.00000000 PM	31.3	30
16310	24-JUN-18 11.48.26.00000000 AM	31.4	30.4
16310	24-JUN-18 06.14.31.00000000 A M	31.4	30.2
16310	24-JUN-18 12.41.05.00000000 AM	31.4	30.4
16310	23-JUN-18 07.07.18.00000000 PM	31.7	30.5
16310	23-JUN-18 01.28.08.00000000 PM	31.6	30.2
16310	23-JUN-18 07.54.15.00000000 AM	31.6	30.3
16310	23-JUN-18 02.20.40.00000000 A M	31.4	30.2



Main Automates: LHCLOG BLOCKS

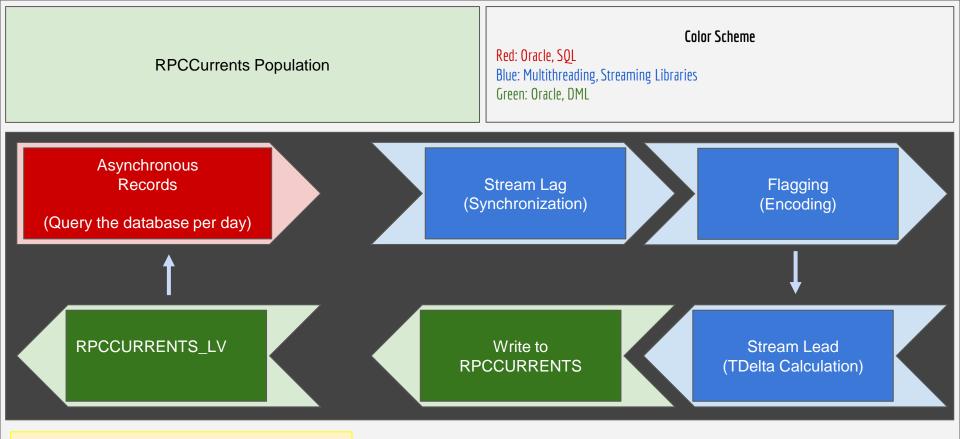
RPC Currents: Data Synchronization & Tagging


Universidad de

os Andes

Asynchronous FWCAENCHANNEL table in CMS_RPC_PVSS_COND

DPID	CHANGE_DATE	VMON	IMON	STATUS
315	25-JUN-17 11.58.29.083000000 PM	6501		
315	25-JUN-17 11.59.31.74500000 PM	6498		
315	26-JUN-17 12.03.46.240000000 AM		12.89999962	
315	26-JUN-17 12.03.46.240000000 AM			3
315	26-JUN-17 12.03.46.241000000 AM	8114		
315	26-JUN-17 12.03.49.194000000 AM	8240		
315	26-JUN-17 12.03.59.618000000 AM	8463		
315	26-JUN-17 12.04.03.358000000 AM	8592		
315	26-JUN-17 12.04.12.933000000 AM	8815		
315	26-JUN-17 12.04.16.631000000 AM	8878		
315	26-JUN-17 12.04.26.126000000 AM		13.30000019	
315	26-JUN-17 12.04.26.127000000 AM	9133		
315	26-JUN-17 12.04.29.838000000 AM		12.1000038	
315	26-JUN-17 12.04.29.838000000 AM	9226		
315	26-JUN-17 12.04.29.838000000 AM			1
315	26-JUN-17 12.04.39.462000000 AM		1	
315	26-JUN-17 12.04.39.463000000 AM	9231		
315	26-JUN-17 12.07.22.387000000 AM		0.699999988	



CIUDAD DF MÉXICO ®

DPID	CHANGE_DATE	VMON	IMON	STATUS	FLAG	TIME_DELTA
315	25-JUN-17 11.58.29.00000000 PM	6501	0.5	1	20	62
315	25-JUN-17 11.59.31.00000000 PM	6498	0.5	1	20	255
315	26-JUN-17 12.03.46.000000000 AM	8114	12.9	3	16	3
315	26-JUN-17 12.03.49.000000000 AM	8240	12.9	3	16	10
315	26-JUN-17 12.03.59.000000000 AM	8463	12.9	3	16	2
315	26-JUN-17 12.04.03.000000000 AM	8592	12.9	3	16	9
315	26-JUN-17 12.04.12.000000000 AM	8815	12.9	3	16	2
315	26-JUN-17 12.04.16.000000000 AM	8878	12.9	3	16	10
315	26-JUN-17 12.04.26.000000000 AM	9133	13.3	3	16	13
315	26-JUN-17 12.04.39.000000000 AM	9231	1	1	24	163
315	26-JUN-17 12.07.22.000000000 AM	9231	0.7	1	24	2

- Data tagging based on
 - RPC HV stable condition
 - CMS Magnetic Field (CMS_DCS_ENV_PVSS_COND.CMSFWMAGNET)
 - ✤ LHC Luminosity (CMS_OMS.LUMISECTIONS)

Example of RPCCurrents Automat The Flagging and TDelta Calculation stages in the data flow are highly important given that they will reduce the stress on the database when being consulted by other tools (WBM, offline analysis, web applications).

CERM

RPC Currents: Ramp Up Smoothing

Problem : high ramp up currents with stable voltage and CAEN actual_status=1

<u>Mechanism</u> : the STATUS changes from 3 (RAMP UP) to 1 (STABLE) soon after the monitored voltage Vmon is close to the set applied voltage V0set.

<u>Reason</u> : due to the big capacitance of the RPC detector, when the monitored voltage Vmon is already stable, the current Imon still continues to decay (charge redistributes on the bakelite surface), so for couple of seconds (~10-ish) there appear between 3 to 5 Imon values which are much above the "stable" chamber operation current. <u>Solution</u> : the values highlighted in yellow, in the example below, are reassigned to the last RAMP UP value with STATUS=3. To avoid a gap in time, the period that each of the data points holds is summed (15 seconds highlighted in yellow) and added to the last ramp up TIME_DELTA value with STATUS=3

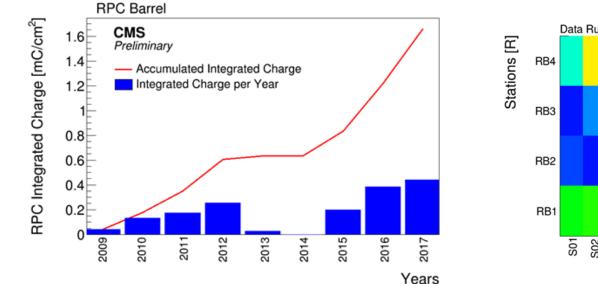
DPID	CHANGE_DATE	VMON	IMON	STATUS	FLAG	TIME_DELTA	DP	ID	CHANGE_DATE	VMON	IMON	STATUS	FLAG	TIME_DELTA
315	24-NOV-09 05.39.31.00000000 PM	833	18	3	0	1	3	315	24-NOV-09 05.39.31.00000000 PM	833	18	3	0	1
315	24-NOV-09 05.39.32.00000000 PM	865	18	3	0	2	3	315	24-NOV-09 05.39.32.00000000 PM	865	18	3	0	2
315	24-NOV-09 05.39.34.00000000 PM	898	18	3	0	3	3	315	24-NOV-09 05.39.34.00000000 PM	898	18	3	0	18
315	24-NOV-09 05.39.38.00000000 PM	997	9.899999619	1	2	2	3	315	24-NOV-09 05.39.53.00000000 PM	997	1.399999976	1	2	354
315	24-NOV-09 05.39.40.00000000 PM	997	5.599999905	1	2	4	3	315	24-NOV-09 05.45.47.00000000 PM	997	0.899999976	1	2	4
315	24-NOV-09 05.39.44.00000000 PM	997	1.799999952	1	2	9	3	315	24-NOV-09 05.45.51.00000000 PM	997	1.20000048	1	2	49
315	24-NOV-09 05.39.53.00000000 PM	997	1.399999976	1	2	354	3	315	24-NOV-09 05.46.40.00000000 PM	997	1.60000024	1	2	3
315	24-NOV-09 05.45.47.00000000 PM	997	0.899999976	1	2	4	3	315	24-NOV-09 05.46.43.00000000 PM	997	1.10000024	1	2	208
315	24-NOV-09 05.45.51.00000000 PM	997	1.20000048	1	2	49	3	315	24-NOV-09 05.50.11.00000000 PM	997	1.5	1	2	19

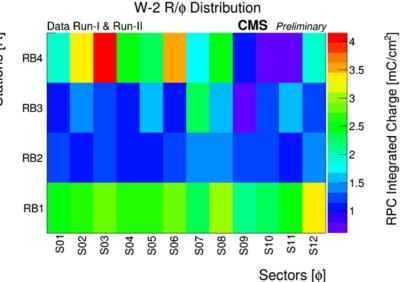
RPC Currents: Ramp Down Smoothing

Problem : when the RPC detector is switched off, in the process of voltage ramp down at lower voltages, the ramp down STATUS=5 changes to 1 (STABLE) before going finally to 0 (OFF). It is a noise in the database, but most importantly, it can create confusion in the algorithms of other automates (i.e. Offset).

Solution : remove that noise without creating a gap in time, see example below

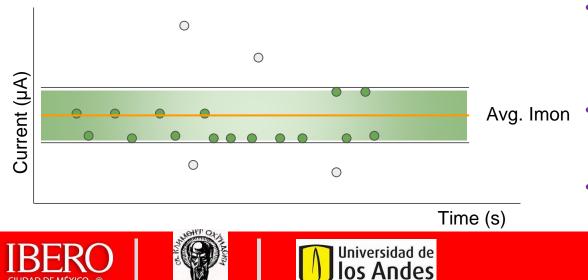
DPID	CHANGE_DATE	VMON	IMON	STATUS	FLAG	TIME_DELTA	DPID	CHANGE_DATE	VMON	IMON	STATUS	FLAG	TIME_DELTA
315	01-OCT-09 06.36.42.00000000 PM	1287	0	5	0	4	315	01-OCT-09 06.36.42.00000000 PM	1287	′ C) 5	0	4
315	01-OCT-09 06.36.46.00000000 PM	1274	0	5	0	4	315	01-OCT-09 06.36.46.00000000 PM	1274	. 0) 5	0	4
315	01-OCT-09 06.36.50.00000000 PM	1263	0	5	0	2	315	01-OCT-09 06.36.50.00000000 PM	1263	0) 5	0	2
315	01-OCT-09 06.36.52.00000000 PM	1252	0	5	0	4	315	01-OCT-09 06.36.52.00000000 PM	1252	. C) 5	0	6
315	01-OCT-09 06.36.56.00000000 PM	1240	0	1	0	2	315	01-OCT-09 06.36.58.00000000 PM	1240	0	0 0	1	2
315	01-OCT-09 06.36.58.00000000 PM	1240	0	0	1	2	315	01-OCT-09 06.37.00.00000000 PM	1228	C	0 0	1	4
315	01-OCT-09 06.37.00.00000000 PM	1228	0	0	1	4	315	01-OCT-09 06.37.04.00000000 PM	1216	6 C	0 0	1	4
315	01-OCT-09 06.37.04.00000000 PM	1216	0	0	1	4	315	01-OCT-09 06.37.08.00000000 PM	1197	C	0 0	1	6




RPC Current Study: Integrated Charge

RPC Integrated charge per single HV channel and Virtual objects is being calculated and a new daily value is stored in dedicated tables at the end of each day.

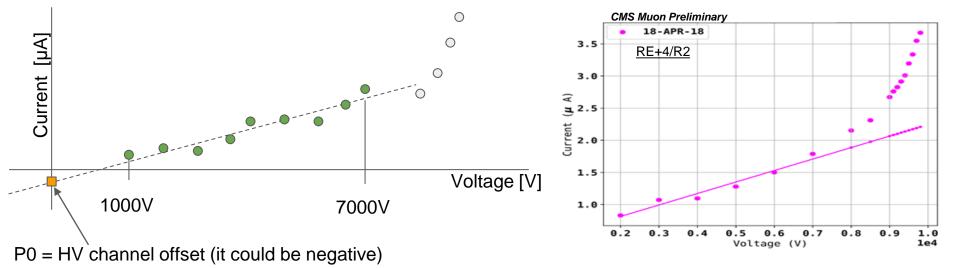
Additional automate is available to provide the **accumulated integrated charge** for virtual objects in 2D maps and the calculated extrapolations to accumulated integrated charge of 3000 fb⁻¹



RPC Current Study: HV Conditioning

The **RPC HV Conditioning** is a current scan taken 3-4 times per year at the voltage steps: 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 8500, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800

Every single HV point is in fact a block of current data at a predefined, stable voltage. For every single data block a dedicated algorithm is applied to better calculate the average for the block. Finally, all blocks are stitched into a single set following the predefined HV points.

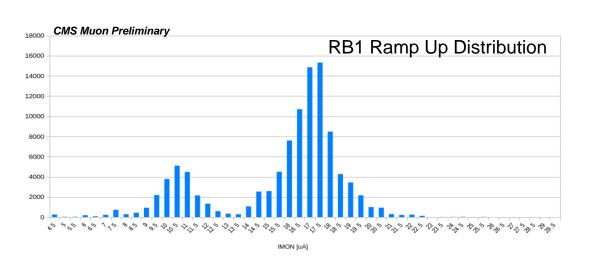


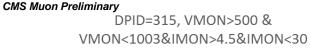
- We keep the points from the Imon distribution within +/- 4σ and remove anything outside the green area.
- We apply the same procedure to the remaining points iteratively till max 10% of initial points are cut.
- We take the mean as Avg. block current

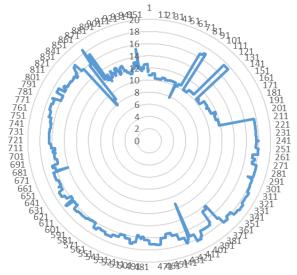
RPC Current Study: HV Conditioning Fit

Finally, the points between 1000 and 7000 V are linearly fit "on the fly" in the data streaming process to provide the fit parameters: **p1**, the reverse of the **Resistance**, and **p0**, the **HV** channel offset.

P0 and P1 plots in time are available in OMS to monitor the stability of the physical parameters behind the fits.

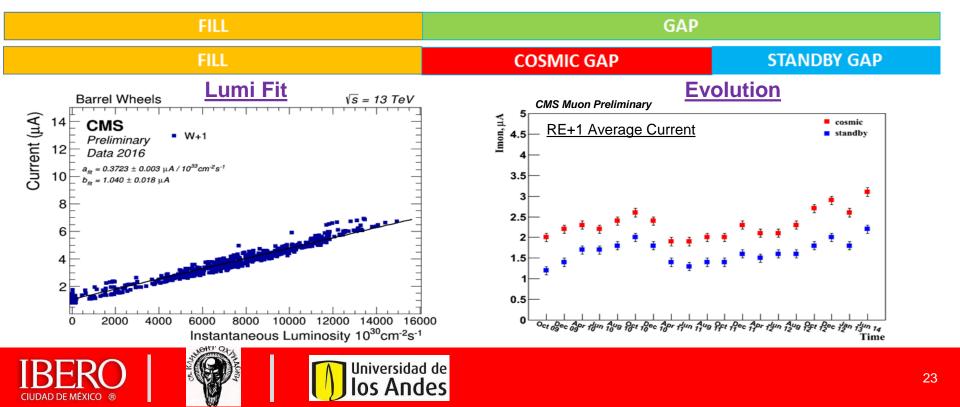

os Andes





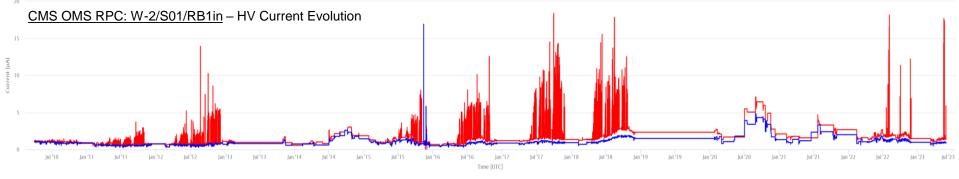
RPC Current Study: Dynamically Define OM

Looking at the ramp up currents between 500 - 1000V, dynamically define the RPC SG/DG OM as well as the timestamp of the OM flip \Rightarrow create change log per HV DPID.



RPC Current Study: Lumi Fit & Evolution

Using the information retrieved from the RPCCURRENTS table, we can analyse the current behaviour as a function of the instantaneous luminosity per fill (left) and the cosmic and standby current evolution in time (right). RPC Evolution automate finds and stores all HV channel trips, overcurrent spikes, initial ramps and offsets.



- Problem: Cosmic and Standby spikes in current evolution.
 - ✓ Collision currents are flagged as cosmic when unstable beams (levelling) → cosmic spikes.
 - ✓ High currents during beam injection → standby spikes.
- Solution: Match current blocks with LHCLOG blocks.
 - ✓ Match cosmic current blocks with LHC cosmic gaps.
 - ✓ Match standby current blocks with LHC standby gaps.

CMS Muon Preliminary

COSMIC • STANDBY • OFFSE

CERM

RPC Current Study: Evolution Problem 2

- Goal: Fast data chamber current plotting on OMS for the entire history (since beginning of Run-I) as shown below.
- Hardware: In Barrel 1 HV channel (DPID) powers 1 chamber while in Endcap 1 channel powers two chambers.
- Problem: Changing DPID mapping in time due to HV channel reshuffling does not allow plotting data fast:
 - Complicated implementation of HV channel to chamber mapping historically in time.

os Andes

- Heavy SQL query for fast plotting on OMS.
- Long data retrieval
- Solution:

CIUDAD DE MÉXICO

- Perform heavy queries in an automate -> change of paradigm
- Store data per chamber.

CMS Muon Preliminary

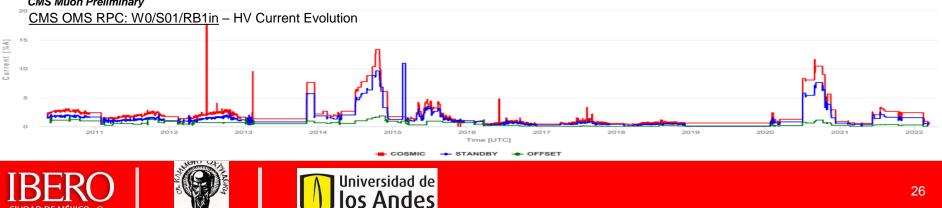
Change of Paradigm

TYPE

....

TYPE

...


** New paradigm:

Switch from DPID to Chamber ID.

- We study the evolution of 1056 \checkmark chambers instead of 781 DPID.
- Data in database are stored per DPID \checkmark & chamber IDs
- During operation:
 - Record in database cosmic, standby, offset currents in the evolution table as TYPE.
 - Fast full period current plotting on OMS. *

CMS Muon Preliminary

CIUDAD DF MÉXICO ®

CHAMBER ID:

DPID

...

DPID

...

STARTTIME

....

CHAMBER ID2

...

STOPTIME

STARTTIME

...

From DPID to ChamberID

IMON

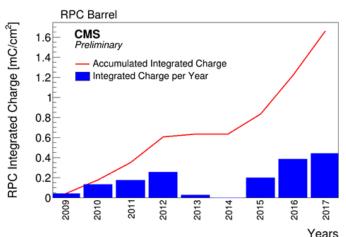
STOPTIME

IMON ERF

....

IMON

...


IMON ERR

...

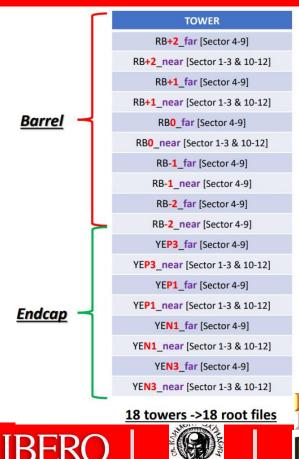
Change of Paradigm: Accumulated Int. Charge

- Accumulated integrated charge corresponds to the total cumulative charge since the beginning of operation (01-OCT-09) until present partitioned daily.
 - ✓ Two associated currents type have been defined (COLLISION and RPC_ON):
 - Accumulated integrated charge per DPID.

DPID	FROM	то	ACC_INTEGRATED_CHARGE	ТҮРЕ

• Accumulated integrated charge per chamber ID (New paradigm)

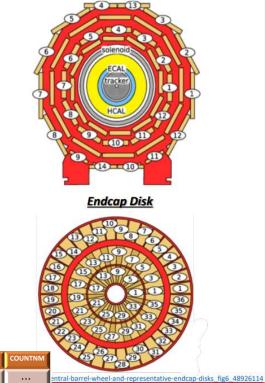
CHAMBER_ID	FROM	то	ACC_INTEGRATED_CHARGE	ТҮРЕ		





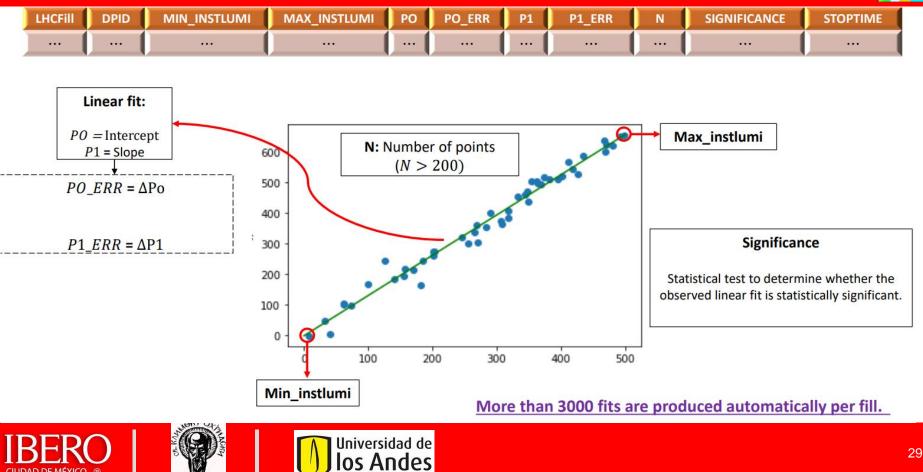
CIUDAD DE MÉXICO ®

RPC Rates



los Andes

Barrel Wheel



CIUDAD DE MÉXICO ®

RPC Rates: Lumi Fit

Conclusions

- CMS RPC non-physics event data automation is extremely powerful JAVA-based framework which gradually evolved in the past 8 years.
- Fully operational on production since 2018
- ✤ Continuous evolution on development → GitLab project: <u>https://gitlab.cern.ch/cms_rpc/rpc-automation</u>
- * Ideology: Data Synchronization, Data Tagging, Relational parameter studies, Full Circle in Automation
- Methods: Data Streaming Techniques, Multithreading, Block Averaging in Probe method, LHC Block conception, Luminosity methods
- Main condition parameters: detector currents and rates, environmental parameters
- Change of framework paradigm: move from hardware channels/sensors DPID to ChamberID.

THANK YOU FOR YOUR ATTENTION!

Backup Slides

RPC Currents vs Instantaneous Luminosity Methods

Barrel stations

8000

Endcap stations

8000

Current vs Luminosity Method 2

△ W-2

W-1

W+0

W+1

W+2

4000

RE-4

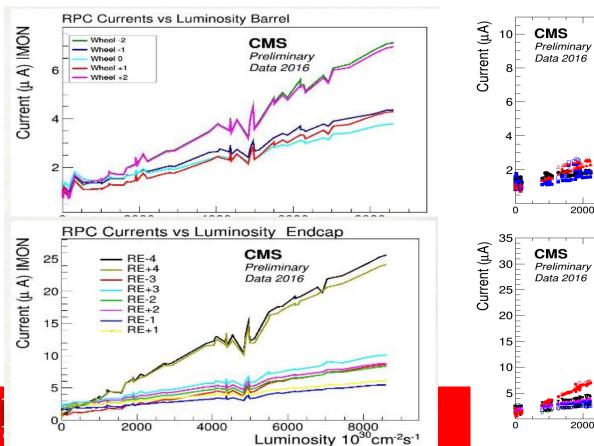
RE+4

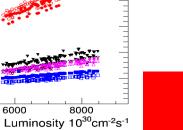
RE-3 RE+3

RE-2

RE+2 RE-1

RE+1

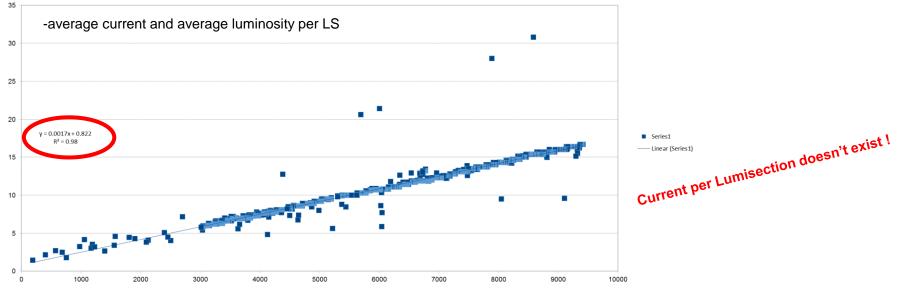

4000


6000

6000

2000

2000

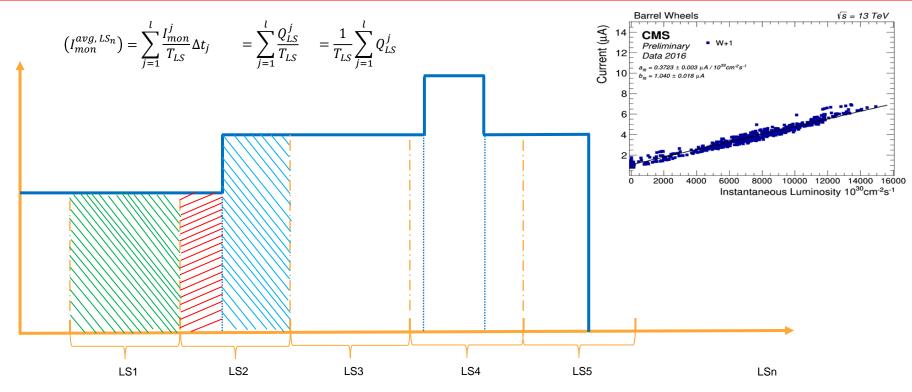


Are all these methods based on run averages the best?

NO → Going to Currents vs Luminosity Method4

Advantages:

- Fast (3-4 fills per year would be enough to have the same dependence)
- Do not average per run, uses every single LS
- Can depict very high instantaneous luminosities
- Could be used per DPID per fill, however ...


CFRI

So what? -> New streaming technique

