

University of Science and Technology of China

A high rate and high timing photoelectric detector prototype with RPC structure

Zhao Yiding, Hu Dongdong, Shao Ming University of Science and Technology of China

Outline

I Background

Background Motivation

- Future high energy physics experiment: **high luminosity**
- high energy Challenges for (gas) detectors: high count rates, high time resolution, eco-friendly gases etc.

TOF (PID, trigger, background suppression, etc.)

- Working in such condition: requirements ($\sigma_t < \sim 30 \text{ps}$, higher rate > kHz/cm2) \rightarrow develop a high rate and timing photoelectric gas detector
- \Box Gas detector's limitation (greenhouse effect) \rightarrow new eco-friendly gases (low GWP value)

The SoLID apparatus in its first (semi-inclusive deep-inelastic scattering) configuration with the polarized 3He target on the left.

Figure 2: Schematic of the major upgrades to the ATLAS detector for the HL-LHC era. (Image

Gaseous photodetector

 MPGD(micro patter gas detector) Single photoelectron: $\sigma_t \sim 44 \text{ps}$ \blacksquare IBF~ ~ $\mathcal{O}(10^{-1})$

<http://dx.doi.org/10.1088/1748-0221/15/04/C04053>

PICOSEC-Micromegas RPC-based photodetector

- \Box One electrode \rightarrow photocathode eliminating the position fluctuation of primary e- \Box High and uniform electric field: enhances the quantum efficiency, large drift v_e -
- \Box Immediately avalanche of primary photoelectron

better time resolution than PICOSEC, but IBF=1

II Simulation – Comsol

electric field

 $\rho_{resistive plate} \rightarrow$, $\Phi_{gas} \nearrow$, $E_{gas} \nearrow$, Gain \nearrow

Ramo's weighting field theorem

 $\Delta U_{W-gas} \sim 0.43 V$

 T_{glass} (Thicknees) \sqrt{q}_{gas} λ , ΔU_{W-gas} λ , induce signal λ

II Simulation

Garfield++

 a valanche \rightarrow signal \rightarrow gain, time resolution, etc.

Uniform filed inside gas, allows for a grid-based MC simulation for the avalanche dynamics (fast simulation)

[RPC | Garfield++ \(cern.ch\)](https://garfieldpp.web.cern.ch/examples/rpc/)

 $\sigma_{t-single\;e^-}$ < \sim 30ps @(RPC/Compass gas, 215um)

Detector design and install

Figure 1: Schematic design of detector.

- \triangleright Resistive glass: 0.5 mm
- \triangleright Gas gap: 215 um
- ➢ Photocathode: 5nm Cr, in lab laser test, use ordinary quartz glass replace MgF2.

Figure 2: Exploded view and photographs of the detector.

Resistivity materials — float glass

Resistivity test

Several types of float glass Diameters $= 25$ mm, thickness $= 0.2$ mm, 0.3mm, 0.5mm

$$
U=IR, R = \frac{\rho l}{s} \qquad \Rightarrow \qquad \rho = \frac{U[voltage]}{I[current]} \frac{S[area]}{I[thickness]}
$$

 \overline{cm} Corning glass 10^{14} II) MRPC glass III) BSi glass $\overline{0}$ [2] IV) Quartz glass 10^{13} V) Air 10^{12} 10^{11} 10^{10} 1000 2000 3000 4000 5000 6000 7000 8000 $HV[V]$ $HV\mathcal{P}, \rho \Delta$ $\rho_{working\ gas} > \rho_{air} \sim 10^{13} \Omega \cdot cm$

Test system

Setup in darkroom

$f_{laser}:$ 1Hz~1000Hz

Change laser intensity by adjusting attenuator 1,2 Two signals are collected on the oscilloscope.

Rate capability of different

Test amplitude of RPC signal

Fix E_{laser}, so the number of primary photoelectrons stays the same. Test A_{RPC} with different glass in Ar/CO2(93/7) as a function of pulse frequency.

- ➢ At same HV: $\rho_{glass} \nearrow$, A \, means smaller E_{gas}
- \triangleright For a same glass $f_{laser} \nearrow$, A \, and the smaller ρ_{glass} , the slower A decreases.

In the later tests, the low resistivity float glass $(1.4 \cdot 10^{10} \Omega \cdot cm,$ thickness $= 0.5$ mm) was used.

Single-photoelectron test

Single-PE signal when f laser pulse < 0.1

Typical signal of single-photoelectron collected by oscilloscope. Signal amplitude, width, rise time are obviously different in different gas.

Ar/CO2(93/7) 2 GHz BW due to big S/N COMPASS gas Ne/C2H6/CF4(80/10/10)

MRPC gas R134a/iC4H10/SF6(90/5/5)

Time resolution – Ar/CO2(93/7)

 σ_t best to 96ps at a gas gain of 5e5. Ar is not a good working gas, A_{signal} is too small, noise has a big influence, damages time resolution. 2024/9/13 12

Time resolution – COMPASS gas Ne/C2H6/CF4(80/10/10)

 $CF_{RPC} = 0.55$

 $\sigma_{NPE=1} = 45{\sim}31 \text{ps}$ at a gas gain of 6e4 ~ 2e5.

R134a/iC4H10/SF6(90/5/5)

"Double peak", caused by photon feedback: at high HV, UV photons are produced and excited PC or gas to generated a new photoelectron, create a new avalanche.

This will make the width and rise time of the signal larger, which is bad for time resolution.

Reduce photon feedback

Select signals of only one primary PE.

 \triangleright Increase iso-butane(decrease R134a):

 $\sigma_{NPE=1}$ best to ~20.3ps (85/10/5)

2 The max working voltage became small

3 No significant change in the time resolution

 10^7

1 Greater gain at same HV

Increase the proportion of iso-butane can effectively reduce photon feedback.

$$
\sigma_{NPE=1} = 50 \sim 20
$$
 ps at a gas gain of $2e5 \sim 7e6$.

IV Eco-friendly gas test

Test the single-PE performance

gain, time resolution, working voltage

SF6 → CF3I

Fix $iC4H10 = 5\%$, $CF3I = (5,10,15,20,25)\%$

• Increase CF3I: Gain ↘, HV↗, TR↘

R134a → R1234ze

Fix $SF6 = 5\%$, R1234ze = $(90, 85, 80, 75, 70)\%$

• Increase iC4H10 : Gain ↗, HV↘, TR↗

R134a → R1234yf

$iC4H10 = 5\%$, $R1234yf = 65\%$, $SFG = 30\%$

material breakdown.

No signal at all, can't work.

2024/9/13 19 (A flat and peaceful curve on oscilloscope until a big discharge at \sim 3000V)

R134a → R1234ze, SF6 → CF3I

Q(Gain) vs. HV Time resolution vs. HV Time resolution vs. Q $\frac{1}{2}$
O⁷ Time resolution [ps] Time resolution [ps] R1234ze/CF₃I 90/5 \rightarrow R1234ze/CF₃I 90/5 R1234ze/CF₂l 85/10 $-$ R1234ze/CF₂l 85/10 60 60 R1234ze/CF₂I 80/15 R1234ze/CF₃I 80/15 R1234ze/CF₂I 75/20 R1234ze/CF₂I 75/20 3×10^6 50 50 R1234ze/CF₃I 70/25 R1234ze/CF₃I 70/25 2×10^6 R134a/SF₆ 90/5 R134a/SF₆ 90/5 40 40 10^{6} R1234ze/CF₃I 90/5 30 30 R1234ze/CF₂I 85/10 R1234ze/CF₂I 80/15 3×10^5 R1234ze/CF₂I 75/20 20 20 2×10^5 R1234ze/CF₂I 70/25 R134a/SF₆ 90/5 10 $10 - 1800$ 2400 2600 3000 2200 2600 2800 2000 2200 2800 2000 2400 3000 1800 2×10^5 $10⁶$ 2×10^6 $d_1^{0^7}$ Ne] HV [V] HV [V]

• Increase CF3I : Gain ↘, HV ↗, TR ~unchanged

Result of all gas, fix iC4H10 = 5%

R1234ze/iC4H10/CF3I(90/5/5) perform best: low GWP, good TRvsQ, moderate working voltage

1. Develop a photoelectric gas detector protype with RPC structure

- 2. Rate capability improved $10^1 \sim 10^2$ times than typical Cheap low ρ float glass: $\rho \sim 1.4 \cdot 10^{10} \Omega \cdot cm$ (typical: $10^{12} \sim 10^{14} \Omega \cdot cm \leq kHz/cm^2$) (very hopefully for mass production)
- 3. $\sigma_{\text{t}_\text{NPE=1}} = 52 \sim 20 \text{ ps}$ (Q: 2e5 \sim 7e6) in standard RPC gas $\sigma_{\text{t}_\text{NPE=1}} = 45 \times 31 \text{ ps}$ (Q: 6e4 ~ 2e5) in COMPASS gas
- 4. Eco-friendly gas test: R1234ze/iC4H10/CF3I(90/5/5) perform best

Backup: more gas test

System's time uncertainty

 PMT : Voltage = 280V, amplitude ~50 mV without amplifier(many photoelectrons) (keep constant) Fix HV_{RPC} , increase E_{laser} , or fix E_{laser} , increase HV_{RPC} .

 $\sigma_{system} \sim \sigma_{PMT} \sim 10 ps$

Signal's characters

Time resolution of single-photoelectron

Constant Fraction Timing (CFD)

 $\sigma_{RPC} = \sqrt{\sigma_{total}^2 - \sigma_{system}^2(10ps)}$ How to decide CF coefficients? eg: Compass gas So in Compass gas, $CF_{RPC} \sim 0.55$, $CF_{PMT} = 0.5$

 CF_{PMT} has no significant influence.

 $CF_{RPC} \sim 0.55$, σ_{total} is best.

Eco-friendly gas test – fix iC4H10 = 5%

test schedule 1 R134a/iso/SF6 2 SF6->CF3I 3 R134a->R123ze 4 R134a->R1233zd 5 R134a->R1234yf 6 R134a->R123ze $SF6-5CF3I$

1 reference 2

2024/9/13 27