

A high rate and high timing photoelectric detector prototype with RPC structure

Zhao Yiding, Hu Dongdong, Shao MingUniversity of Science and Technology of China

- II Simulation
- III Experiment test singlePE performance
- IV Eco-friendly gas test
- V Summary

Background

Background

Future high energy physics experiment:

high luminosity

high energy

Challenges for (gas) detectors:

high count rates, high time resolution, eco-friendly gases etc.

The SoLID apparatus in its first (semi-inclusive deep-inelastic scattering) configuration with the polarized 3He target on the left.

CBM

Motivation

TOF (PID, trigger, background suppression, etc.)

- Working in such condition: requirements $(\sigma_t < \sim 30ps, higher rate > kHz/cm2) \rightarrow$ develop a high rate and timing photoelectric gas detector
- ☐ Gas detector's limitation (greenhouse effect)→ new eco-friendly gases (low GWP value)

ATLAS upgrade (HL-LHC)

Gaseous photodetector

PICOSEC-Micromegas

- MPGD(micro patter gas detector)
- **□** Single photoelectron: $\sigma_t \sim 44 \text{ps}$
- □ IBF~ ~ $\mathcal{O}(10^{-1})$

http://dx.doi.org/10.1088/1748-0221/15/04/C04053

RPC-based photodetector

- □ One electrode → photocathode eliminating the position fluctuation of primary e-
- \blacksquare High and uniform electric field: enhances the quantum efficiency, large drift v_e -
- ☐ Immediately avalanche of primary photoelectron

better time resolution than PICOSEC, but IBF=1

RPC (
$$\sigma_t$$
: 10²ps ~ ns)

Replaced by photocathode

https://doi.org/10.1002/9783527698691.ch3 P.47

Simulation – Comsol

electric field

$$\Delta U_{gas} = HV * \frac{\rho_{gas} \cdot l_{gas}}{\rho_{gas} \cdot l_{gas} + \rho_{glass} \cdot l_{glass}}$$

Small current in loop, not electrostatic $\rho_{resistive\ plate} \setminus$, $\Phi_{gas} \nearrow$, $E_{gas} \nearrow$, Gain \nearrow

weighting field

Ramo's weighting field theorem

$$\Delta U_{W-gas} \sim 0.43 V$$

$$T_{glass}$$
(Thicknees) \(\stau, T_{gas} \) \(T_{gas} \) \(\Delta U_{W-gas} \) \(T_{gas} \) \(T

925 875

Simulation

Garfield++

avalanche \rightarrow signal \rightarrow gain, time resolution, etc.

Uniform filed inside gas, allows for a grid-based MC simulation for the avalanche dynamics (fast simulation)

RPC | Garfield++ (cern.ch)

 $\sigma_{t-single\ e^-} < \sim 30 ps$ @(RPC/Compass gas, 215um)

Experiment

Detector design and install

Figure 1: Schematic design of detector.

Resistive glass: 0.5 mm

➤ Gas gap: 215 um

> Photocathode: 5nm Cr, in lab laser test, use ordinary quartz glass replace MgF2.

Figure 2: Exploded view and photographs of the detector.

Resistivity materials — float glass

Resistivity test

Several types of float glass Diameters = 25mm, thickness = 0.2mm, 0.3mm, 0.5mm

U=IR,
$$R = \frac{\rho l}{S}$$
 \Rightarrow $\rho = \frac{U[voltage]}{I[current]} \frac{S[area]}{l[thickness]}$

HV/,
$$\rho \searrow$$

$$\rho_{working\;gas} > \rho_{air} \sim 10^{13} \Omega \cdot cm$$

Test system

Setup in darkroom

 f_{laser} : 1Hz~1000Hz Change laser intensity by adjusting attenuator 1,2 Two signals are collected on the oscilloscope.

System's time uncertainty:

 $\sigma_{system} \sim \sigma_{PMT} \sim 10 ps$

Rate capability of different ρ_{glass}

Test amplitude of RPC signal

Fix E_{laser} , so the number of primary photoelectrons stays the same. Test A_{RPC} with different glass in Ar/CO2(93/7) as a function of pulse frequency.

Real amplitude

Max amplitude = 1

- At same HV: $\rho_{glass} \nearrow$, A \(\sigma\), means smaller E_{gas}
- For a same glass $f_{laser} \nearrow$, $A \searrow$, and the smaller ρ_{glass} , the slower A decreases.

In the later tests, the low resistivity float glass $(1.4 \cdot 10^{10} \ \Omega \cdot cm)$, thickness = 0.5 mm) was used.

Single-photoelectron test

Single-PE signal when $\frac{f_{RPC}}{f_{laser\ pulse}} < 0.1$

Typical signal of single-photoelectron collected by oscilloscope. Signal amplitude, width, rise time are obviously different in different gas.

Ar/CO2(93/7)
2 GHz BW due to big S/N

COMPASS gas Ne/C2H6/CF4(80/10/10)

MRPC gas R134a/iC4H10/SF6(90/5/5)

Time resolution -Ar/CO2(93/7)

CFD: constant-fraction discrimination

$$\sigma_{RPC} = \sqrt{\sigma_{total}^2 - \sigma_{system}^2(10ps)}$$

$CF_{RPC} = 0.55$, A>6mV		
HV[V]	$A_{signal}[Ne]$	Time resolution[ps]
775	2.3e5	121.9
800	4.4e5	100.0
825	5.5e5	96.0
850	4.8e5	100.9

 σ_t best to 96ps at a gas gain of 5e5. Ar is not a good working gas, A_{signal} is too small, noise has a big influence, damages time resolution.

Time resolution – COMPASS gas

$$CF_{RPC} = 0.55$$

 $\sigma_{\text{NPE}=1} = 45 \sim 31 \text{ps}$ at a gas gain of 6e4 ~ 2e5.

MRPC gas: photons feedback

R134a/iC4H10/SF6(90/5/5)

"Double peak", caused by photon feedback: at high HV, UV photons are produced and excited PC or gas to generated a new photoelectron, create a new avalanche.

This will make the width and rise time of the signal larger, which is bad for time resolution.

Reduce photon feedback

Increase the proportion of iso-butane can effectively reduce photon feedback. Select signals of only one primary PE.

 $\sigma_{\text{NPE}=1} = 50 \sim 20 \text{ ps}$ at a gas gain of 2e5 ~ 7e6.

- ➤ Increase iso-butane(decrease R134a):
 - 1 Greater gain at same HV
 - 2 The max working voltage became small
 - 3 No significant change in the time resolution $\sigma_{NPE=1}$ best to ~20.3ps (85/10/5)

R134a / iC4H10 / SF

~20.3ps

Eco-friendly gas test

Test the single-PE performance

gain, time resolution, working voltage

Gas	formula	GWP	test schedule	
R134a	CF3-CFH2	1430	1	R134a/iso/SF6
R1234ze	CF3-CH=CHF	<1	1	2 10 10 10 10 10
			2	SF6->CF3I
R1233zd	CF3-CH=CHCl	1	3	R134a->R123ze
R1234yf	CF3-CF==CH2	<1	4	R134a->R1233zd
			5	R134a->R1234yf
Iso-butane	iC4H10	3.3		3
	SF6	22800	6	R134a->R123ze SF6->CF3I
	CF3I <5	<5		

only change the working gas

$SF6 \rightarrow CF3I$

Fix iC4H10 = 5%, CF3I = (5,10,15,20,25)%

• Increase CF3I: Gain ↘, HV↗, TR↘

$R134a \rightarrow R1234ze$

Fix SF6 = 5%, R1234ze = (90,85,80,75,70)%

• Increase iC4H10 : Gain ↗, HV↘, TR↗

$R134a \rightarrow R1234yf$

iC4H10 = 5%, R1234yf = 65%, SF6 = 30%

R1234yf ratio [%]	discharge HV [V]
90	2300
80	2600
65	3000

• R1234yf: easy discharge.

 $R134a \rightarrow R1233zd (<3100V)$

No signal at all, can't work.

HV power supply turn off (rated I~3 mA), Normal $I_{loop} \sim 10 \text{ nA}$ material breakdown.

(A flat and peaceful curve on oscilloscope until a big discharge at >~3000V)

$R134a \rightarrow R1234ze$, SF6 \rightarrow CF3I

Time resolution vs. Q

• Increase CF3I : Gain ↘, HV ↗, TR ~unchanged

R1234ze/iC4H10/CF3I(90/5/5) perform best: low GWP, good TRvsQ, moderate working voltage

Summary

- 1. Develop a photoelectric gas detector protype with RPC structure
- 2. Rate capability improved $10^1 \sim 10^2$ times than typical Cheap low ρ float glass: $\rho \sim 1.4 \cdot 10^{10} \Omega \cdot cm$ (typical: $10^{12} \sim 10^{14} \Omega \cdot cm$, $< kHz/cm^2$) (very hopefully for mass production)
- 3. $\sigma_{\text{t}_{\text{NPE}=1}} = 52 \sim 20 \text{ ps}$ (Q: 2e5 ~ 7e6) in standard RPC gas $\sigma_{\text{t}_{\text{NPE}=1}} = 45 \sim 31 \text{ps}$ (Q: 6e4 ~ 2e5) in COMPASS gas
- 4. Eco-friendly gas test: R1234ze/iC4H10/CF3I(90/5/5) perform best

Backup: more gas test

Num	Gas	ratio	Working HV	Time resolution
1	Ar/CO2	93/7	790 ~850	~90
2	Ne/C2H6/CF4	80/10/10	780~840	~30
3		90/5/5	2100~2750	~29
4	MRPC gas	85/5/10	2100~2620	~27
5	R134a(C2H2F4)/SF6/iC4H1	80/5/15	2100~2590	~26
	0	75/5/20	2100~2560	~26
6 7		70/5/25	2100 ~ 2530	~25
8	R134a/SF6/iC4H10/CF4	70/5/20/5	2100 ~ 2530	~29
9	R134a/SF6/iC4H10/C2H6	70/5/20/5	2100 ~ 2530	~26

System's time uncertainty

PMT : Voltage = 280V, amplitude ~50 mV without amplifier(many photoelectrons) (keep constant)

Fix HV_{RPC} , increase E_{laser} , or fix E_{laser} , increase HV_{RPC} .

10.0 mN/ 0.0 V 💿 🖀 20.0 mN/ 0.0 V 🕀 » 😃

 $\sigma_{system} \sim \sigma_{PMT} \sim 10 ps$

Signal's characters

Gas	Amplitude(mV) x20	Width[ns]	Risetime[ns]
Ar\CO2	15 ~ 20	2.6 ~ 2.9	1.28 ~ 1.35
Compass gas	25 ~ 38	0.55 ~ 0.59	0.36 ~ 0.39
Compass gas	30 ~ 650	0.94 ~ 0.1.1	0.41 ~ 0.49

Time resolution of single-photoelectron

Constant Fraction Timing (CFD)

$$\sigma_{RPC} = \sqrt{\sigma_{total}^2 - \sigma_{system}^2(10ps)}$$
 How to decide CF coefficients? eg: Compass gas

So in Compass gas, $CF_{RPC} \sim 0.55$, $CF_{PMT} = 0.5$

Fix $CF_{RPC} = 0.5$, change CF_{PMT}

 CF_{PMT} has no significant influence.

Fix $CF_{PMT} = 0.5$, change CF_{RPC}

 $CF_{RPC} \sim 0.55$, σ_{totla} is best.

Eco-friendly gas test – fix iC4H10 = 5%

test schedule		
1	R134a/iso/SF6	
2	SF6->CF3I	
3	R134a->R123ze	
4	R134a->R1233zd	
5	R134a->R1234yf	
6	R134a->R123ze SF6->CF3I	

1 reference