

University of Science and Technology of China

### A high rate and high timing photoelectric detector prototype with RPC structure

Zhao Yiding, Hu Dongdong, Shao Ming University of Science and Technology of China

### Outline



# Background

### Background

- Future high energy physics experiment:
  high luminosity
- high energy
  Challenges for (gas) detectors:
  high count rates, high time resolution, eco-friendly gases etc.

#### Motivation

TOF (PID, trigger, background suppression, etc.)

- Working in such condition: requirements ( $\sigma_t < \sim 30ps$ , higher rate > kHz/cm2) → develop a high rate and timing photoelectric gas detector
- □ Gas detector's limitation (greenhouse effect)→ new eco-friendly gases (low GWP value)



The SoLID apparatus in its first (semi-inclusive deep-inelastic scattering) configuration with the polarized 3He target on the left.





CBM



Figure 2: Schematic of the major upgrades to the ATLAS detector for the HL-LHC era. (Image: ATLAS Collaboration/CERN)





### **Gaseous photodetector**

### **PICOSEC-Micromegas**

MPGD(micro patter gas detector)
 Single photoelectron:  $\sigma_t \sim 44 ps$  IBF~ ~ $\mathcal{O}(10^{-1})$ 



http://dx.doi.org/10.1088/1748-0221/15/04/C04053

### **RPC-based photodetector**

- □ One electrode → photocathode eliminating the position fluctuation of primary e □ High and uniform electric field: enhances the quantum efficiency, large drift v<sub>e</sub>-
- □ Immediately avalanche of primary photoelectron

better time resolution than PICOSEC, but IBF=1







## **Simulation – Comsol**

#### electric field



Small current in loop, not electrostatic  $\rho_{resistive \ plate}$ ,  $\Phi_{gas}$ ,  $E_{gas}$ , Gain



Ramo's weighting field theorem

 $\Delta U_{W-gas} \sim 0.43 V$ 

 $T_{glass}$ (Thicknees)  $\land$ ,  $T_{gas} \nearrow$ ,  $\Delta U_{W-gas} \nearrow$ , induce signal  $\nearrow$ 

# **Simulation**

#### **Garfield++**

avalanche  $\rightarrow$  signal  $\rightarrow$  gain, time resolution, etc.

Uniform filed inside gas, allows for a grid-based MC simulation for the avalanche dynamics (fast simulation)

#### <u>RPC | Garfield++ (cern.ch)</u>



 $\sigma_{t-single e^-} < \sim 30 ps$  @(RPC/Compass gas, 215um)



# **Experiment**

#### **Detector design and install**



Figure 1: Schematic design of detector.

- ➤ Resistive glass: 0.5 mm
- ➢ Gas gap: 215 um
- Photocathode: 5nm Cr, in lab laser test, use ordinary quartz glass replace MgF2.



Figure 2: Exploded view and photographs of the detector.

### **Resistivity materials** — float glass

#### **Resistivity test**

Several types of float glass Diameters = 25mm, thickness = 0.2mm, 0.3mm, 0.5mm



U=IR, 
$$R = \frac{\rho l}{s} \implies \rho = \frac{U[voltage]}{I[current]} \frac{S[area]}{l[thickness]}$$

·cm] ) Corning glass 10<sup>14</sup> II) MRPC glass III) BSi glass ρ[Ω IV) Quartz glass 10<sup>13</sup> V) Air 10<sup>12</sup> 10<sup>11</sup> 10<sup>10</sup> 1000 2000 3000 4000 5000 6000 7000 8000 HV [V] HV⊅, *ρ*∖  $\rho_{working \, gas} > \rho_{air} \sim 10^{13} \Omega \cdot cm$ 



### Test system

#### Setup in darkroom



*flaser*: 1Hz~1000Hz

Change laser intensity by adjusting attenuator 1,2 Two signals are collected on the oscilloscope.



## Rate capability of different $\rho_{glass}$

#### Test amplitude of RPC signal

Fix  $E_{laser}$ , so the number of primary photoelectrons stays the same. Test  $A_{RPC}$  with different glass in Ar/CO2(93/7) as a function of pulse frequency.



At same HV:  $\rho_{glass} \nearrow$ , A \, means smaller  $E_{gas}$ 

For a same glass *f*<sub>laser</sub> ↗, A↘, and the smaller ρ<sub>glass</sub>, the slower A decreases.

In the later tests, the low resistivity float glass  $(1.4 \cdot 10^{10} \Omega \cdot cm,$  thickness = 0.5 mm) was used.

### **Single-photoelectron test**

### **Single-PE signal when** $\frac{f_{RPC}}{f_{laser pulse}} < 0.1$

Typical signal of single-photoelectron collected by oscilloscope. Signal amplitude, width, rise time are obviously different in different gas.

Ar/CO2(93/7) 2 GHz BW due to big S/N COMPASS gas Ne/C2H6/CF4(80/10/10)

MRPC gas R134a/iC4H10/SF6(90/5/5)



### Time resolution – Ar/CO2(93/7)



 $\sigma_t$  best to 96ps at a gas gain of 5e5. Ar is not a good working gas,  $A_{signal}$  is too small, noise has a big influence, damages time resolution.

## Time resolution – COMPASS gas Ne/C2H6/CF4(80/10/10)

 $CF_{RPC} = 0.55$ 



 $\sigma_{\text{NPE}=1} = 45 \sim 31 \text{ps}$  at a gas gain of  $6e4 \sim 2e5$ .

### MRPC gas: photons feedback **R134a/iC4H10/SF6(90/5/5)**



"Double peak", caused by photon feedback: at high HV, UV photons are produced and excited PC or gas to generated a new photoelectron, create a new avalanche.

This will make the width and rise time of the signal larger, which is bad for time resolution.

### **Reduce photon feedback**

Select signals of only one primary PE. Fix SF6 = 5%Time resolution vs. Q<sub>signal</sub> Q vs. HV 25 10 R134a / iC4H10 / SF R134a / iC4H10 / SF 55 The ratio of photon feedback signal [%]  $CF_{RPC} = 0.2$ - 90/5/5 --- 90/5/5 20 4×10<sup>6</sup> 50 85/10/5 85/10/5 3×10<sup>6</sup> - 80/15/5 - 80/15/5 resolution [ps] 2×10<sup>6</sup> 15 <sup>Jual</sup> [Ne] 40 70/25/5 R134a / iC4H10 / SF 70/25/5 Q --- 90/5/5 35 Time - 85/10/5 30 80/15/5 4×10<sup>5</sup> 3×10<sup>5</sup> 75/20/5 25 70/25/5 2×10 20 15 2300 HV [V] 2400 2100 2200 2400 HV [V] 2500 2600 2700 2100 2200 2500 2600 2700 2300 2×10<sup>5</sup> Q<sub>signal</sub><sup>10<sup>6</sup></sup>[Ne] 2×10<sup>6</sup> not exponentially, space ~20.3ps charge effect

Increase the proportion of iso-butane can effectively reduce photon feedback.

$$\sigma_{\text{NPE}=1} = 50 \sim 20 \text{ ps}$$
 at a gas gain of  $2e5 \sim 7e6$ .

Increase iso-butane(decrease R134a):

1 Greater gain at same HV 2 The max working voltage became small 3 No significant change in the time resolution  $\sigma_{NPE=1}$  best to ~20.3ps (85/10/5)

107



## **Eco-friendly gas test**

#### **Test the single-PE performance**

gain, time resolution, working voltage

| Gas        | formula     | GWP   | test schedule |                |
|------------|-------------|-------|---------------|----------------|
| R134a      | CF3-CFH2    | 1430  | 1             | R134a/iso/SF6  |
| R1234ze    | CF3-CH=CHF  | <1    | 2             | SF6->CF3I      |
| R1233zd    | CF3-CH=CHCl | 1     | 3             | R134a->R123ze  |
| R1234yf    | CF3-CF==CH2 | <1    | 4             | R134a->R1233zd |
| Iso-butane | iC4H10      | 33    | 5             | R134a->R1234yf |
|            | SF6         | 22800 | 6             | R134a->R123ze  |
|            | CF3I        | <5    |               | SF6->CF3I      |

only change the working gas

### $SF6 \rightarrow CF3I$



#### Fix iC4H10 = 5%, CF3I = (5,10,15,20,25)%



• Increase CF3I: Gain ↘, HV↗, TR↘

### $R134a \rightarrow R1234ze$



#### Fix SF6 = 5%, R1234ze = (90,85,80,75,70)%



• Increase iC4H10 : Gain ↗, HV↘, TR↗

### $R134a \rightarrow R1234yf$

#### iC4H10 = 5%, R1234yf = 65%, SF6 = 30%



material breakdown.

No signal at all, can't work.

(A flat and peaceful curve on oscilloscope until a big discharge at  $>\sim$  3000V)

### $R134a \rightarrow R1234ze, SF6 \rightarrow CF3I$

#### Fix SF6 = 5%, R1234ze = (90,85,80,75,70)%

Q(Gain) vs. HV



• Increase CF3I : Gain ↘, HV ↗, TR ~unchanged

Ø

### Result of all gas, fix iC4H10 = 5%



R1234ze/iC4H10/CF3I(90/5/5) perform best: low GWP, good TRvsQ, moderate working voltage





1. Develop a photoelectric gas detector protype with RPC structure

- 2. Rate capability improved  $10^{1} \sim 10^{2}$  times than typical Cheap low  $\rho$  float glass:  $\rho \sim 1.4 \cdot 10^{10} \Omega \cdot cm$  (typical:  $10^{12} \sim 10^{14} \Omega \cdot cm, < kHz/cm^{2}$ ) (very hopefully for mass production)
- 3.  $\sigma_{t_{\text{NPE}=1}} = 52 \sim 20 \text{ ps} (Q: 2e5 \sim 7e6)$  in standard RPC gas  $\sigma_{t_{\text{NPE}=1}} = 45 \sim 31 \text{ps} (Q: 6e4 \sim 2e5)$  in COMPASS gas
- 4. Eco-friendly gas test: R1234ze/iC4H10/CF3I(90/5/5) perform best

#### **Backup: more gas test**

| Num | Gas                     | ratio     | Working HV  | Time resolution |
|-----|-------------------------|-----------|-------------|-----------------|
|     |                         |           |             |                 |
| 1   | Ar/CO2                  | 93/7      | 790 ~850    | ~90             |
| 2   | Ne/C2H6/CF4             | 80/10/10  | 780~840     | ~30             |
| 3   |                         | 90/5/5    | 2100~2750   | ~29             |
| 4   | MRPC gas                | 85/5/10   | 2100~2620   | ~27             |
| 5   | R134a(C2H2F4)/SF6/iC4H1 | 80/5/15   | 2100~2590   | ~26             |
|     | 0                       | 75/5/20   | 2100~2560   | ~26             |
| 6   |                         | 70/5/25   | 2100 ~ 2530 | ~25             |
| 7   |                         | 10/3/23   | 2100 2000   | 20              |
| 8   | R134a/SF6/iC4H10/CF4    | 70/5/20/5 | 2100 ~ 2530 | ~29             |
| 9   | R134a/SF6/iC4H10/C2H6   | 70/5/20/5 | 2100 ~ 2530 | ~26             |
|     |                         |           |             |                 |



### System's time uncertainty

*PMT* : Voltage = 280V, amplitude ~50 mV without amplifier(many photoelectrons) (keep constant) Fix  $HV_{RPC}$ , increase  $E_{laser}$ , or fix  $E_{laser}$ , increase  $HV_{RPC}$ .





 $\sigma_{system} \sim \sigma_{PMT} \sim 10 ps$ 

### Signal's characters

| Gas         | Amplitude(mV) x20 | Width[ns]    | Risetime[ns] |
|-------------|-------------------|--------------|--------------|
| Ar\CO2      | 15 ~ 20           | 2.6 ~ 2.9    | 1.28 ~ 1.35  |
| Compass gas | 25 ~ 38           | 0.55 ~ 0.59  | 0.36 ~ 0.39  |
| Compass gas | 30 ~ 650          | 0.94 ~ 0.1.1 | 0.41 ~ 0.49  |



## **Time resolution of single-photoelectron**

#### **Constant Fraction Timing (CFD)**

 $\sigma_{RPC} = \sqrt{\sigma_{total}^2 - \sigma_{system}^2 (10ps)}$  How to decide CF coefficients? eg: Compass gas

So in Compass gas,  $CF_{RPC} \sim 0.55, CF_{PMT} = 0.5$ 



 $CF_{PMT}$  has no significant influence.

 $CF_{RPC} \sim 0.55$ ,  $\sigma_{totla}$  is best.

### Eco-friendly gas test – fix iC4H10 = 5%

1 reference

2

test schedule R134a/iso/SF6 1 2 SF6->CF3I 3 R134a->R123ze 4 R134a->R1233zd 5 R134a->R1234yf R134a->R123ze 6 SF6->CF3I