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Why ultra-low GWP gases?

• Resistive plate chambers

• Plasma processing technology

• Gaseous dielectrics in HV technology

• Refrigerants

Environmental Impact!

- EGWIn Project  

- Exploring ultra-low Global Warming potential 

gases for Insulation in high-voltage technology: 

Experiments and modelling
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What is a swarm of charged-particles?
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Boltzmann equation:

Ludwig Boltzmann (1844-1906)

Swarm conditions:
❑ Low density of charged particles:

• Neglect interactions between charged particles

• Neglect space charge effects

❑ E and B fields are spatially homogeneous and externally 

prescribed

❑ Small spatial gradients in number density

❑ Minimal boundary effects

1872 → 2022: 150th anniversery of the Boltzmann equation!

Neutral gas atoms/molecules

A swarm particle

Swarm conditions ≡ Free diffusion plasma limit 
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How do we solve the Boltzmann equation?

Expansion;

Truncation Boltzmann equation

System of equations for the

moments of the dist. function

Transport coefficients

Convergence checking

incremented (independently) parameters

which are truncated until the convergence

criterion is met.

Orthogonality relations;

Symmetry and reality considerations 

• Resolving the speed dependence:

• Resolving the angular dependence in velocity space:

• Projecting out the space dependence:
• Hydrodynamic regime:
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• Non-hydrodynamic regime:

• finite difference

• pseudo-spectral
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Dujko et al. 2010 Phys. Rev. E 81 046403
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Transport coefficient duality

❑ Two families of transport coefficients: Flux and Bulk

▪ Defined under hydrodynamic conditions!

▪ Independent of the method of measurement! 

❑ Swarm Experiments:

▪ Time-of-flight

▪ Pulsed-Townsend

▪ Steady-state Townsend

▪ Arrival-time spectra, …

❑ Fluid modelers must be aware of the origin of the 

transport coefficients they are using in their 
models!
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ECO3: HFO1234ze/CO2/ /i-C4H10/SF6 29/65/5/1

RPC ECOGas@GIF++ Collaboration

Dujko et al. unpublished

1 Td =10-21 Vm2
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Cross sections for electron
scattering in C2H2F4, C3HF5 and
C3H2F4
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Cross-section set for electron scattering in C2H2F4 (R134a)

Quantemol-N code calculations: 
• Electronic excitation

• Ionization

• Dissociative electron attachment

Vibrational excitations: 
Yamada et al. (1998) have calculated harmonic 

vibrational frequencies v1 – v18. The number of cross 

sections for vibrational excitations is reduced to 11.

T. Yamada, T.H. Lay and J.W. Bozzelli, J. Phys. Chem. A 1998, 102 7286-7293

Cross-section for 3-body attachment: 
Initially developed by Biagi (2010). In the present work it is 

modified to fit the effective ionization coefficient 

measured by Basile et al. (1999).

G. Basile, I. Gallimberti, S. Stangherlin, T.H. Teich, in Proceedings of the XX 

International Conference on Phenomena in Ionized Gases, edited by M. 

Vaselli, Vol. 2, 1991, p. 361

Cross sections for electron scattering in C2H2F4:
(1) Elastic momentum transfer, (2)-(12) Vibrational 
excitation, (13)-(14) Electronic Excitation, (15) 3-body 

attachment, (16) Dissociative attachment, (17) Ionization 

Šašić et al. unpublished
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Effective ionization coefficient in Ar-C2H2F4 mixtures
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• Very good 

agreement is reached 

between calculated 

and measured data in 

pure C2H2F4 and its 

mixtures with Ar.

• In most cases 

differences are about 

10% indicating that the 

inelastic losses are 

determined with 

sufficient accuracy 

over the wide range of 

the applied E/Ns

• Critical electric field 

of 112.5 Td for pure 

C2H2F4 agrees very well 

with the value 

determined by Basile 

et al. (1991). 
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Present cross-section set vs. Biagi 2024
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• Good agreement between the swarm data obtained using the two cross-section sets.

• Example of non-uniqueness: two completly different cross-section sets provide good agreement

between measurements and kinetic calculations.  

Biagi 2024: Marnik Metting van Rijn et al. (2024) J. Phys. D: Appl. Phys. 57 (2024) 355202

Better agreement
between bulk values!
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Why third-order transport coefficients?
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•  Required in swarm analysis for converting transport data measured in various experiments into

hydrodynamic transport coefficients. They can be negative!

•  Necessary for describing deviations of spatial density profile from an ideal Gaussian.

•  Since they are very sensitive with respect to the energy dependence of cross sections - their 

measurement and calculation would improve the accuracy of cross section fitting procedure

(reducing the non-uniqueness!).
Dujko et al. unpublished
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Is C3HF5 a good candidate for replacing C2H2F4 in RPCs?
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Pentafluoropropene C3HF5:
• Also known as HFO1225ye(Z) or R1225ye(Z)

• Considered as (1) medical propellant, (2) possible component of an alternative refrigerant blend, (3) plasma 

processing gas, and (4) gaseous dielectrics. So far it has not be considered in RPCs!  

Pentafluoropropene C3HF5 vs R134a

+ Low-toxicity, Non-flammable, Good chemical stability, Good thermal stability.

- Boiling point (-19.2 oC at 0.1 MPa), Difficult to directly apply in gas insulated HV equipment (must be mixed with    

buffer gases), RPCs: Too high operating voltages, More prone to streamer formation, More expensive
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Cross sections for electron
scattering in C3HF5

Elements of swarm analysis

We use individual cross sections for electron scattering in C2F6, 
C3F6, and C3F8 to construct the initial set. 

C3F6 and C3HF5 have drift velocities that are quite similar. This 
applies to the effective ionization rate coefficient above the 
critical electric field as well. 

Cross sections for ionization and dissociative attachment are 
calculated using Quantemol-N code.

Pulsed-Townsend measurements of effective ionization 
coefficient, drift velocity, and longitudinal diffusion coefficient 
were used as a set of reference data.

The three-body attachment cross section was developed 
manually using measurements of the pressure-dependent 
effective ionization coefficient. 

Cross sections for electron scattering in C3HF5:
(1) Elastic momentum transfer, (2)-(7) Vibrational 
excitation, (8) Electronic Excitation, (9) 3-body 
attachment, (10) Dissociative attachment, (11) Ionization

Dujko et al. unpublished 
C3F6 C3HF5
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Drift velocity in Ar-C3HF5 mixtures
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• We have reached the optimal

fit with the present data.

• Cross sections for electron

scattering in Ar were taken

from Hayashi’s database.

• What is NDC? Negative 

differential conductivity (NDC) 

is a decrease of the drift

velocity with increasing E/N.

• Good agreement between 

measured and calculated drift 

velocity in the presence of 

NDC is a good indicator of 

momentum balance in our 

cross-section set.

We observe the following:
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Effective ionization coefficient in Ar-C3HF5 and N2-C3HF5 mixtures
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Effective ionization coefficient in N2-C3HF5 mixtures: Our data vs. 
HV ETH Zurich experimental data
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Pachin et al. (2019 ) J. Phys. D: Appl. Phys. 52 235204
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Effective ionization coefficient in N2-C3HF5 mixtures: Our data vs. 
HV ETH Zurich experimental data
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Pachin et al. (2019 ) J. Phys. D: Appl. Phys. 52 235204
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Is C3H2F4 a good candidate for replacing C2H2F4 in RPCs?
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Tetrafluoropropene C3H2F4:
• Also known as HFO1234ze(E)

• Applications: (1) used as a refrigerant gas as a replacement of hydrofluorocarbon R134a (C2H2F4) (2) plasma 

processing gas, (3) gaseous dielectrics, (4) used in RPC detectors as a replacement of R134a!  

Pentafluoropropene C3H2F4 vs R134a

+ Low-toxicity, Non-flammable, Good chemical stability, Good thermal stability.

- Boiling point (-19 oC at 0.1 MPa), Difficult to directly apply in gas insulated HV equipment (must be mixed with 

buffer gases), RPCs: Cannot be used as a replacement of R134a (must be mixed with R134a, CO2 or He) 
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Cross sections for electron
scattering in C3H2F4

Elements of swarm analysis

The initial cross-section set is constructed using individual cross 
sections for electron scattering in C2F6, C3F6, and C3F8, and a 
set of cross sections for C3HF5. 

Cross sections for ionization and dissociative attachment are 
calculated using Quantemol-N code.

Pulsed-Townsend measurements of effective ionization 
coefficient, drift velocity, and longitudinal diffusion coefficient 
were used as a set of reference data.

The three-body attachment cross section was developed 
manually using measurements of the pressure-dependent 
effective ionization coefficient. Cross sections for electron scattering in C3H2F4:

(1) Elastic momentum transfer, (2)-(7) Vibrational 
excitation, (8)–(9) Electronic Excitation, (10) Thermal
attachment, (11) 3-body attachment, (12) Dissociative
attachment, (13) Ionization

Dujko et al. unpublished 

C3HF5 C3H2F4
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Drift velocity and effective
ionization coefficient for
electrons in pure C3H2F4

Very good agreement between 
experimental results and calculations.

Drift velocity: within 5% for E/N<300 Td, 
and 12% for higher values of E/N.

Effective ionization coefficient: within 
10% with the exception around 
critical electric field.

In pure C3H2F4 there is no NDC in the 
profile of drift velocity.

Critical electric field is pressure-
dependent (at 1 bar pressure 273 Td).

Mixtures with argon: Good 
agreement between measured and 
calculated drift velocity in the 
presence of NDC Mirić et al. unpublished
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Effective ionization
coefficient in          
pure C3H2F4

• Excellent agreement between our 
kinetic calculations and 
measurements under pulsed-
Townsend conditions.

• Scaling factor for the cross section 
of a 3-body attachment is linear 
function of the gas pressure (no 
detachment!).

• Gas pressure has no impact on 
drift and diffusion. This suggests 
that the 3-body attachment has 
small implicit effects on the 
distribution function.

• Critical electric field increases with 
increasing gas pressure. At 1 bar 
pressure, the Ecr is approximately 
275 Td.
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Dujko et al. unpublished

Chachereau et al. (2016) Plasma Sources Sci. Technol. 25 045005
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Electron transport in eco-friendly
RPC gas mixtures
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Considering the very low GWP 
factor for HFO1234ze, why not 
just replace R134a with 
HFO1234ze?

• Critical electric field of the standard CMS 
mixture is 149 Td.

• When C2H2F4 is entirey replaced by C3H2F4, 
the critical electric field is increased to 250 
Td.

• Over the entire range of E/N drift velocity is 
higher when R134a is replaced by
HFO1234ze.

• For approximatelly 30<E/N<350 Td
NDL (R134a) > NDL (HFO1234ze).

• For approximatelly 50<E/N<300 Td
NDT (R134a) > NDT (HFO1234ze)

• Too high operating voltages to be 
compatible with the high voltage systems 
and readout electronics employed in the 
LHC experiments!

• HFO1234ze must be mixed with CO2 or He!
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Electron transport in standard CMS mixture with the addition of CO2

• 30%CO2: Ecr(SF6 0.3) < Ecr(SF6 0.6)  
<Ecr(Std) < Ecr(SF6 0.9)

• 40%CO2: Ecr(SF6 0.3) < Ecr(SF6 0.6)  
<Ecr(Std) = Ecr(SF6 0.9)

• 50%CO2: Ecr(SF6 0.3) < Ecr(SF6 0.6)  
<Ecr(SF6 0.9) < Ecr(Std)

• Bulk W and NDL are enhanced with
increasing fraction of SF6.
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• Each 10% increase in CO2 decreases 
the critical electric field by 
approximately 5 Td. If we assume the 
STP and a 2 mm gap, this suggests a 
shift of the working point by 
approximately 250 V. 

• More CO2 in the mixture leads to more 
charge release and a higher 
probability for the occurrence of 
streamers.
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Ionization

effects

Rigoletti et al. (2023) Nucl. Instrum. Meth. Phys. Res. A 

1049 (2023) 168088 
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Electron transport in standard CMS, ECO2 and ECO3 mixtures

• Attchment heating and explicit
effects of ionization are evident

• Drift and diffusion are enhanced in 
ECO2 and ECO3 mixtures

• Surprisingly, the critical electric field
for the ECO3 mixture is slightly lower
than that of the standard CMS

• Anisotropic nature of the diffusion
tensor is more pronounced for
ECO2 and ECO3 mixtures
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Abbrescia et al. (2024) Eur. Phys. J. C (2024) 84:300

• Faster transition from an
avalanche into a streamer

• Stronger field enhancment, more 
liberated charge, larger streamer
velocity, stronger signals in RPCs

Dujko et al. unpublished
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Possible alternatives to SF6
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C5F10O 1.0%, Ecr = 141 Td
C5F10O 1.5%, Ecr = 152 Td
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C4F7N 1.0%, Ecr = 197 Td
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Similar to std cms

Similar to std cms

Higher working
point!

Gas Pro Cons

CF3I
Low GWP <1,

High Ecr, 437 Td
Toxic

C5F10O
Low GWP <1, 

High Ecr, 765 Td
Boiling

point 27oC

C4F7N High Ecr, 972 Td
High GWP 

~2200, Toxic

Dujko et al. unpublished
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Fluid modelling of streamer
discharges in eco-friendly RPC 
gas mixtures
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Classical fluid model

• Advection diffusion reaction equation for the time evolution of 
the number density of electrons:

•
𝜕𝑛𝑒

𝜕𝑡
+ ∇ 𝑛𝑒𝑾 − 𝑫∇𝑛𝑒 = 𝑛𝑒 𝛼 − 𝜂 𝑾 + 𝑆𝑝ℎ 

• Reaction equations for the time evolution of the number 
densities of ions:

•
𝜕𝑛𝑝

𝜕𝑡
= 𝑛𝑒𝛼 𝑾 + 𝑆𝑝ℎ 

𝜕𝑛𝑛

𝜕𝑡
= 𝑛𝑒𝜂 𝑾

• Local field approximation

• Total electric field:

• 𝐄 = 𝑬𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − ∇Φ𝑠𝑝𝑎𝑐𝑒_𝑐ℎ𝑎𝑟𝑔𝑒  ΔΦ𝑠𝑝𝑎𝑐𝑒_𝑐ℎ𝑎𝑟𝑔𝑒 = −𝑞𝑒
𝑛𝑝−𝑛𝑒−𝑛𝑛

𝜀0
 

• Photoionization model is implemented for N2-O2 mixture using 
the Zheleznyak model.

Dujko et al. (2013) J. Phys. D: Appl. Phys. 46 475202
Simonović et al. (2024) Plasma Sources Sci. Technol. 33 085012 (19pp)
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Numerical solution in the AMReX library

• Spatial discretization: Finite volume 
method

• Scalar variables are defined at cell 
centers, while vector variables are 
defined at cell faces

• Flux limiting schemes are employed to 
interpolate electron density from the 
cell centers to the cell faces to 
calculate the flux of electrons

• Time integration: 2nd order Runge-Kutta

• Time step restriction criteria: the CFL 
condition, the dielectric relaxation time 
and the time step restriction due to 
rates of nonconservative processes

• AMRex - An open-source C++ library 
for massively parallel, block-structured 
adaptive mesh refinement (AMR) 
applications

• AMReX includes inbuilt geometric 
multigrid solvers for the Poisson 
equation and the Helmholtz equations

• Allows both MPI and OpenMP 
parallelization, as well as 
parallelization on graphic processing 
units

• Adaptive mesh refinement is applied 
to correctly describe streamer 
dynamics at the streamer front

Simonović et al. (2024) Plasma Sources Sci. Technol. 33 085012 (19pp)



2929

Two-headed streamers
in RPC’s mixtures

• Positive streamer starts slower than the 
negative streamer, but later (after a 
few ns, depending on E/N) it quickly
makes up for this.

• Positive streamer is narrower and 
therefore its field enhancement is
larger than in the negative streamer.

• Negative streamers have a larger
radius. Streamer radius is a 
complicated function of time. 

• In eco-friendly mixtures there is a faster 
transition from an avalanche into a 
streamer, a larger amount of charge is 
released, with a more intense field 
amplification at the front of the 
streamer. These properties become 
more obvious with increasing externally 
applied electric fields.

Electron 
density

Electric 
field

Standard CMS ECO2 ECO3

Dujko et al. unpublished

E E

E E

E/N = 182 Td
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Positive ions

Axial electric field

Standard CMS ECO2 ECO3

Negative ions

Radial electric field

ECO2 ECO3Standard CMS

Dujko et al. unpublished

E

E
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Streamer velocity in the standard CMS, ECO2 and ECO3 mixtures
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• Streamers accelerate after 
transitioning from an 
avalanche into a two-headed
streamer 

• Streamer velocity is higher than
the electron drift velocity

• Negative streamers are faster
than positive streamers

• Streamers in ECO3 mixture are 
the fastests

• Only for the lowest E/N of 182 
Td, positive streamers in ECO2 
mixture are slightly slower than
those in the standard CMS 
mixture

Dujko et al. unpublished

E/N = 182 Td E/N = 192 Td

E/N = 201 Td E/N = 210 Td
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Concluding remarks

• We have extended and generalized our multi-
term theory for solving the BE and our MC 
code to study the transport of electrons in 
eco-friendly RPC gas mixtures.

• We have developed complete and consistent 
sets of cross sections for electron scattering in 
C2H2F4, C3HF5, C3H2F4, CF3I, C5F10O, and C4F7N. 

• Knowledge of cross sections and transport 
coefficients for electrons is of key importance 
in future modelling studies of RPCs and 
experimental measurements of time resolution, 
efficiency, charge spectra, etc.

• Concepts of attachment heating, attachment 
cooling, and the implicit and explicit effects of 
non-conservative collisions on drift and 
diffusion play a very important role in 
understanding transport coefficient duality. 

• We have implemented the classical fluid 
model within the AMReX software 
environment. The numerical integrity of the 
code is verified in several benchmark 
calculations, with and without 
photoionization.

• On the time scale of a few ns, negative 
streamers are faster in the standard CMS, 
ECO2 and ECO3 mixtures. 

• The field enhancement at the streamer front 
is stronger for positive streamers, while the 
streamer radius is larger for negative 
streamers.

• Transition from an avalanche into a streamer 
occurs faster for the eco-friendly gas 
mixtures.
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Additional slide: What can swarms bring to the
modelling of gaseous particle detectors?

• Kinetic models: overcome/assess currently used approximations such as the TTA, effective field approximation, …
• Fluid models: provision of accurate swarm data, correct implementation of swarm data, information on non-local

effects (temporal and spatial).

Advantages:
• Completeness

• Absolute cross sections

• Direct applicability to model 

plasmas and particle detectors

Disadvantages:
• Non-uniqnuess

• Limited resolution

• Complexity and indirect nature of 

procedure

What has been done?
• Normalized sets: NO, N2O, HBr, CF4, …

• New sets: C2H2F4, C3H2F4, C3HF5, …
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