

15 Years Young: the ALICE TOF detector in LHC RUN 3

Sofia Strazzi

on behalf of the ALICE Collaboration (University and INFN Bologna, Italy)

XVII Conference on Resistive Plate Chambers and Related Detectors

.....

- ALICE TOF MRPC
- Upgrade of LS2
- Performance in Run3
- Physics with TOF
- LS3 plans

The ALICE Experiment a dedicated heavy-ion experiment at the LHC

Designed to cope with **very high multiplicities** ($dN_{ch}/d\eta \le 8000$)

- **3D tracking** with TPC
- moderate **B = 0.5 T**
- Low material budget
- **low-p_{T} tracking** down to $p_{T} \sim 100 \text{ MeV}/c$

Uses all known **PID** techniques among which a large area **Time Of Flight detector**

> 15 years of data taking

L: 28 metres H: 16 metres W: 10kt

ALICE TOF MRPC

120 m 12

1593 MRPCs double stack **M**ulti-gap **R**esistive **P**late **C**hamber

- Gas mixture: 93% C₂H₂F₂ + 7% SF₆
- 10(2x5) 250 mm gaps (double stack)
- 120x7.4 cm² strip active area
- 2 rows of 48 pickup pads per strip (3.5x2.5 cm²)

Built in 2005-2006

ALICE Time-Of-Flight (TOF) detector

Needs Design Hadron identification in **Pb-Pb** collisions at **intermediate** *p*_T 3.7 < r < 4.0 mTOF detector

$|\eta| < 0.9$ polar acceptance

- 2π full azimuthal acceptance
- cylindrical surface
- **18-fold Φ**-segmentation
- 5-fold z-segmentation

- large coverage (~141 m²)
- High PID efficiency (> 95%)
- excellent time resolution (< 80 ps)

Supermodule

Backframe

paceframe

- high granularity (~10⁵ channels)
- Noise without beam (~1 Hz/pad)

Based on the multigap **RPC** technology (**MRPC**)

→ Example of **wide area** MRPC application!

Timing performance in old runs

			•									_								
ALICE 1	ALICE 2				ALICE 2.1							ALICE 3								
LHC		Lŀ	łC			LHC			Lŀ	łC		Lŀ	łC		Lŀ	IC		LHC	Lŀ	IC
Run 2		Run 3			LS3			Run 4		LS4		Run 5			LS5	LS5 Run 6				
	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

τοF β

김 가슴 소란지 말 수가 다 하고 다 가지 않는

Increase in luminosity from Run2 to Run3

LS3

Run 4

Run 3

Run 5

LS4

Run 6

LS5

TOF readout UPGRADE for Run 3

ALICE moved in Run3 to continuous readout to cope with the enhanced luminosity

→ Run 1 and 2 (physics trigger received)

- trigger from Central Trigger Processor (CTP)
- TDC selected matching window of 600 ns
- only one collision event

→ Run 3 periodic trigger (asynchronous with respect to physics events)

Continuous readout implemented in TOF with large (30 μ s) **latency window**, and **periodic triggers** to cover all the orbit.

TOF readout UPGRADE for Run 3

To achieve this condition the internal buffering capabilities of the HPTDC are fully exploited

 \rightarrow using a matching window of ~ 30 µs and a pseudo-trigger at a fixed frequency

 $f_t = 3/t_{LHC-orbit}$ of 33 kHz

In order to keep up with the increase of the interaction rate ~ 1 MHz in pp & 50 kHz in Pb–Pb → a new Digital Readout Module 2 (DRM2) was designed

TOF calibrations in the continuous readout scheme

TOF calibrations are performed at different stages of data taking and reconstruction:

- Start of the run → from the TOF slow control system storing the TOF active channel map at the beginning of the run (DCS calibrations)
- 2) Sync calibration → During the data taking on the EPN farm
- Offline reconstruction (async calibration)
 → performed offline with a better reconstruction quality and updated with the final time slewing correction

Example of time slewing calibration for a single channel is reported

TOF Operations – Stability

PERCENTAGE OF ACTIVE CHANNELS DURING TIME

The missing $\% \rightarrow$ due to electronics (TDC cards) and HV connectors (not to MRPC!)

BEAM TIME EFFICIENCY

2018 → TOF has been in readout 98% of time 2024 → So far TOF has been in readout 99.1% of time Stable efficiency during years → now with higher statistics acquired thanks to the upgraded readout

TOF Operations – Stability

Very stable operations over the years

average current per MRPC of few nA no ageing effects

TOF Operations – Matching efficiency

TOF-track matching efficiency at 2.5 GeV using the 2023 dataset (pp, 13.6 TeV)

Dominant term

Particle IDentification (PID) with TOF

Dominant term

Particle IDentification (PID) with TOF

RPC2024, 9-13 September 2024

PID performances in the commissioning of RUN 3

Separation of the different particle species achieved with the TOF as a function of p computed under the mass hypothesis of the kaon

→ The pion and proton bands are clearly visible and separated at low momenta

TOF time resolution in Run 3

A measurement of the separation between particle species ($t_{TOF} - t_{exp} - t_{ev}$) generated by using the event times acquired from the TOF and FT0 detectors

Resolution extracted in the range 1.4 < *p* < 1.5 GeV/*c*

- Negligible tracking contribution
- Well separated pions and kaons peaks

$\sigma_{TOF} = (81.7 \pm 2.7) \text{ ps}$

The contribution of FT0 detector $(\sim 17 \text{ ps})$ was subtracted

TOF time resolution in Run 3

A measurement of the separation between particle species ($t_{TOF} - t_{exp} - t_{ev}$) generated by using the event times acquired from the TOF and FT0 detectors

Resolution extracted in the range 1.4 < *p* < 1.5 GeV/*c*

- Negligible tracking contribution
- Well separated pions and kaons peaks

$\sigma_{TOF} = (81.7 \pm 2.7) \text{ ps}$

The contribution of FT0 detector $(\sim 17 \text{ ps})$ was subtracted

New approach to extract time resolution in a standalone way

A self-consistent measurement by employing $\Delta \Delta t_{\text{TOF}} = (t_{\text{TOF}} - t_{\text{exp}}^{\pi})_2 - (t_{\text{TOF}} - t_{\text{exp}}^{\pi})_{1 = \text{ref}}$

by correlating two tracks matched to TOF in the same event (independent of the definition of collision) → using tracks in a specific kinematic region (reference) to provide the "event time" information

$$\sigma^{\text{PID}}_{\text{TOF}} = \sigma_{\text{TOF}} \oplus \sigma_{\text{trk,expTime}} \oplus \sigma_{\text{ref}} \\ \rightarrow 0 \text{ for large } p_{\text{TOF}} = \sqrt{(\sigma^{\text{PID}}_{\text{TOF}}^2 - \sigma_{\text{ref}}^2)}$$

Obtained by fitting the signal

Measured with high precision (only tracks in the reference kinematic region, 1=ref)

New approach to extract time resolution in a standalone way

ALI-PERF-577654

New approach to extract time resolution in a standalone way

Tracking contribution

ALI-PERF-577671

When particle momentum is high enough (pions p > 1 GeV/c)

- → the contribution from σ_{Tracking} becomes negligible
- → only the TOF component contributes to the resolution

▶ **p**: Higher contribution from tracking

↗ p: Negligible tracking contribution, we expect to reach a plateau

TOF Performance in RUN 3 Pb-Pb

TOF timing performance in Pb-Pb with refined time-slewing calibration σ_{TOF} ~ 68 ps

RUN 3 Physics with TOF (pp): spectra

Scan in luminosity – pp

Average **TOF hit multiplicity** (per readout crate) in 1 µs as a function of the **interaction rate** in pp

MRPC hit rate increases linearly with the LHC luminosity with no sign of deviation (no ageing effect after many years of operation)

RPC2024, 9-13 September 2024

TRM2 project status

Long term project to **replace part of TRM damaged with a new TDC card** based on **PicoTDC** (instead of HPTDC) no longer spares available need to guarantee high efficiency up to end of Run4

→ Plan: produce 100 new TRM2, replace during LS3 up to 50 broken TRM

Status

- picoTDC test board (produced in 2023) fully tested coupled to PolarFire FPGA
- advanced status of schematics (INFN-BO) and layout (CAEN) for prototypes: first prototypes expected by end of 2024

- The ALICE-TOF detector is a large (active area 141 m²) high-performance detector based on MRPC technology taking data for 15 years.
- Since its installation until today:
 - **no loss in performance:** time performance in Run 3 already equal or very close to Run 2! Stable for 15 years
 - no degradation of MRPC
 - very stable detector
- **Readout upgrade for Run 3** TOF is now operating in **continuous readout** due to increase of luminosity and interaction rate in LHC Run 3 Calibrations performed are working well
 - **Performance** shows a time res. of **80 ps** in pp (new standalone method consistent with classical one) and 68 ps in Pb-Pb
 - Working for LS3 "upgrade"

Continuous readout from Run 3

TOF PID

used in plenty of analyses: nuclei, idspectra, HF

of data taking

BACKUP SLIDES

DUALAL AFIDEA

1593 MRPCs with a **gas mixture** of **93%** C₂H₂F₂ + **7%** SF₆

- Allowed for scientific usage
- **Gas volume** of ALICE-TOF is **small** compared to other experiments
- Closed loop circulation system with minimal losses

→ The actual mixture will remain until Run 4 (end of life of TOF)

R&D ongoing:

The EEE Collaboration is testing alternative green mixtures based on $C_3H_2F_4$ with the addition of He or CO_2 to be used in RPC.

- Significant reduction of Global Warming Potential (GWP)
- Good performance ~ standard ones at moderate voltages
- **Does not allow ALICE-TOF time resolution** requirements

Integrated Iuminosity in Run 3, pp

TOF calibrations in the continuous readout scheme

TOF Time Resolution vs ϕ , η

 \rightarrow extra smearing of the distribution when integrating over the full η acceptance