Novel tunable materials for resistive protection of gaseous detectors from room temperature to 90 K

Sara Leardini

On behalf of:

Ángel Alegría, Carlos Azevedo, Amos Breskin, Shikma Bressler, Lara Carramate, Diego Gonzalez Diaz, Francisco Guitián, Luca Moleri, Miguel Morales, Lucía Olano Vegas, Carlos Pecharromán, Andrea Tesi, Yi Zhou

Background

Needs in detectors with HV

spark-quenching

adjusting the charge-induction profile from moving charges to improve space resolution in tracking detectors

reducing local charging-up

Too conductive -> problem not solved

Solution -> resistive materials

Too resistive -> charging-up + field deformation

Objective

- Find a suitable material for spark-quenching operating at LAr temperature -> candidates: DLC, Fe₂O₃/YSZ ceramics

Right range of surface/bulk resistivity: $10-10^4$ Mohm / sq – 10^9 - 10^{12} Ω ·cm

-Characterize such materials + behavior with temperature

see S. Leardini et al., Nucl. Instr. Meth. A 1049 (2023) 168104 for DLC and L. Olano-Vegas et al., Front. Detect. Sci. Technol. Volume 1 (2023) for ceramics

- Operate them in a detector

see A. Tesi et al, Eur. Phys. J. C **83**, 979 (2023) and A. Tesi, S. Leardini et al., JINST 19 P02019 (2024)

DLC characterization

- DLC produced at the University of Science and Technology of China

-Deposition through magnetron sputtering

- -Procedure: substrate kept in oven @ 70°C
 - surface cleaned with ethanol
 - vacuum @ 10⁻⁵ mbar
 - deposition (20-60 min)

- Six different ~ 10 x 10 cm samples with kapton substrate (named A-F)

From talk by Yi Zhou:

https://indico.cern.ch/event/852331/contributions/4611238/attachments/ 2367150/4042458/Resistive%20Detectors%20with%20DLC.pdf

Cryogenic setup

Home- made cryostat Able to measure all the range of resistivities

Uniformity and aging

-RT : no aging effect after transporting > 2 C / cm²

-LN : < 2% variations

-DUNE Far Detector (assuming ³⁹Ar background, gain =100): 60.5 µC/cm² in 10 years⁶

Linearity

All samples linear both at RT and 77K

R-T curves

$$R = R_{300} * \exp\left(\left(\frac{T_0}{T}\right)^a - \left(\frac{T_0}{300}\right)^a\right)$$

a = 1/3 for resistance over the surface

(see B. I. Shklovskii, A. L. Efros,
"Electronic Properties of Doped
Semiconductors", Springer, Berlin (1984)
and N. F. Mott, "Metal Insulator
Transition", Taylor & Francis, London
(1974).

Ceramics characterization

- Fe₂O₃/YSZ ceramics produced at Ceramics Institute of Galicia

- Made by slip casting, possible to produce samples with different concentrations of Fe_2O_3

Experimental setup

Studied samples with concentrations of Fe_2O_3 in the range 30% - 100%

Characterized behavior with respect to E field, temperature, time

Aging test

Linearity

40%

• 50% -60%

65%

75%

78%

10³

70%

Impedance spectroscopy

Thorough study being performed at CFM (Basque Country)

R-T curve

Concentrations of Fe₂O₃ that yield right bulk resistivity @90K: 65% - 80%

Test in detector @ WIS: R(P)-WELL

Test in detector: setup

- Attenuated and collimated alpha source
- Drift region 15 mm, 500 V/cm
- -0.8 mm THGEM
- -DLC fixed to a PCB board with electrically-insulating cryogenic epoxy, ceramics also with conductive epoxy
- Assembly inserted in a teflon cup, in saturated argon vapour (90K, 1.2 bar)

Starting point: unprotected structures THGEM and THWELL ->

-same experimental conditions

-single discharge makes stable gain operation impossible, power supplies had to be restarted

- max gain 6 and 8 respectively

$$G_{\rm Eff} = \frac{P_{\rm Amplif}}{P_{\rm Coll}}$$

RWELL: gain curve

Gain stabilization curve at 90K – 20G Ω -RWELL

RWELL: spectra

RWELL: comparison

RPWELL: spectra

Typical spectra from MCA - 75%Fe₂O₃-RPWELL at 90K

And what about RPCs?

From CMS experiment website

DLC and ceramics have **tunable** resistivity:

-> possible to produce samples in right range for RT operation

-> compatible with RPC-based detectors

Conclusions

- DLCs and Fe₂O₃/YSZ display good properties to use them as resistive protection for detectors that operate at cryogenic temperature

- A Fe₂O₃/YSZ ceramics was successfully operated in Ne/5%CH₄ atmosphere at LXe temperature (see A. Roy *et al* 2019 *JINST* **14** P10014)

-We managed to operate a detector in LAr (90 K) with DLC layers, obtaining a maximum stable gain of 30 with a 20 Gohm/sq sample

- We managed to operate the detector in LAr with two different ceramics samples, having 75% and 65% Fe₂O₃ concentration, obtaining a maximum stable gain of 16

- Thanks to the possibility of tuning resistivity (changing thickness for DLCs, Fe₂O₃ concentration for ceramics), the materials can be operated in a wide range of temperatures, including room temperature. This is in principle compatible with RPC-based detectors.

Thanks for your attention!

Contacts: sara.leardini@usc.es diego.gonzalez.diaz@usc.es