

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

EUROPEAN SPALLATION SOURCE

Progress with the nRPC-4D detector concept for neutron scattering applications: *assessment of XYZ-position and nTOF readout capability in beam tests*

Luís Margato, A. Morozov, A. Blanco, J. Saraiva, L. Lopes, P. Fonte

Chung Chuan Lai, Per-Olof Svensson

B. Guerard and J. Marchal

Outline

- Introduction
- nRPC-4D detector design
- Detector prototype
- Experimental results
- Summary

margato@coimbra.lip.pt | XVII international Conference on Resistive Plate Chambers and Related Detectors 9 -13th September 2024, Santiago de Compostela \mathcal{P}

Introduction

Motivation

The RPC detectors, introduced in the 80s by **R. Santonico, R.Cardarelli (1981)** [1] shows a strong potential for applications in Neutron Scattering Science (NSS) and Beyond.

The European Spallation Source is currently driving the development of new types of neutron detectors.

Main goal

Develop RPC-based neutron detectors able to satisfy modern NSS instrument requirements, such as:

- High ($> 50\%$) neutron detection efficiency
- Low gamma sensitivity
- High spatial resolution and nTOF capability
- High counting rate
- Affordable costs

[1] [https://doi.org/10.1016/0029-554X\(81\)90363-3](https://doi.org/10.1016/0029-554X(81)90363-3)

Previous work

10 Double gap RPCs

- **● Active area: 8 cm x 8 cm**
- Anodes: **0.5 mm** thick float glass
- Cathodes: **0.5 mm** thick Al
- Gas gap width: **0.35 mm**
- **•** ¹⁰B₄C layer: 1.15 μm

Detector tested at FRM II (MLZ)

- Detection Efficiency: 62.1% ($\lambda = 4.73$ Å)
- Spatial resolution (x and y): \sim 0.25 mm FWHM
- Gamma sensitivity $(0.511 \text{ MeV}) < 10^{-6}$

L.M.S. Margato *et al* 2020 *JINST* 15 P06007

nRPC-4D detector design

● Standalone neutron detection modules: Double gap RPCs coated with ¹⁰B₄C to enable **sensitivity to cold/thermal neutrons**

$$
n + {}^{10}B \rightarrow \begin{cases} {}^{7}\text{Li}(0.84 \text{ MeV}) + {}^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.47 \text{ MeV}), & 94\% \\ {}^{7}\text{Li}(1.01 \text{ MeV}) + {}^{4}\text{He}(1.78 \text{ MeV}), & 6\% . \end{cases}
$$

nRPC-4D detector design

- **Standalone neutron detection modules:** Double gap RPCs coated with ¹⁰B₄C to enable **sensitivity to cold/thermal neutrons**
- **● Signal pickup: Thin film PCBs with parallel Cu strips for XY position readout**

Thin film PBCs

- \bullet 25 μ m thick polyamide
- 2 arrays of parallel mutually-orthogonal Cu strips: **Pitch = 1mm**; **Width = 0.3 mm**

nRPC-4D detector design

- **Standalone neutron detection modules:** Double gap RPCs coated with ¹⁰B₄C to enable **sensitivity to cold/thermal neutrons**
- **● Signal pickup: Thin film PCBs with parallel Cu strips for XY position readout**
- **● Multilayer structure for high neutron detection efficiency: Stack of 10 nRPC modules**

Optimization of the ${}^{10}B_{4}C$ layers thickness

Simulations in Geant4 (v10.7.2) Detection Efficiency optimized by setting only 3 different possible thicknesses for the 10B4C Primary neutrons (**4.7 Å**) generated as a **pencil beam** with normal incidence at the center of the detector.

Optimized thicknesses for (λ **n = 4.5 Å)**

- **0.4 μm** for RPC 1 to 3
- **0.6 μm** for RPC 4 to 7
- **2.2 μm** for RPC 8 to 10

All ¹⁰B₄C layer with the same **thickness (1.15 μm)**

Identify the ${}^{10}B_4C$ layer where a neutron is captured

8

Observed shift in the reconstructed position, most likely due to a misalignment between the strip arrays for the Y- coordinate.

A. Morozov *et al* 2021 *JINST* **16** P08032

One possible solution: Pair of arrays of parallel Cu strips, mutually orthogonal.

~ 0.2 mm 0.50 mm FWHM $80⁵$ 70 $20²$

Ambiguity in the ¹⁰B₄C layer where a neutron is captured

250

 200

 $150¹$

100

Xi (Yj) strips, from each array, with the **same index are interconnected** and **read by the same electronic channel**

Timing and XYZ coordinates

Cathode signal *(serves two purposes)*

- Event timing \rightarrow **nTOF**
- Identification of the nRPC where a neutron is captured

Arrays of parallel Cu strips mutually orthogonal

● XY- coordinates

Triggered cathode + Difference in signal sum on strips x and y, X - sum signal $> Y$ - sum signal Neutron capture in the **top ¹⁰B₄C layer** of a nRPC

X- sum signal < Y- sum signal Neutron capture in the **bottom** ¹⁰**B**₄**C** layer of a nRPC

● Z-coordinate

nRPC-4D prototype

Neutron detection module

Double gap RPC with the cathode coated on both sides with a layer of ${}^{10}B_4C$

Frame: FR4 Spacers: 0.28 mm diameter PEEK monofilament Cathode (190 mm x 190 mm):

- 0.3 mm thick aluminium
- Both sides coated with $^{10}B_4C$ at the **ESS Detector Coatings Workshop**

Anodes (200 mm x 200 mm):

- 0.33 mm thick float glass
- External faces painted with resistive ink

EUROPEAN SPALLATION SOURCE

 \rightarrow

nRPC-4D prototype

10 nRPCs \rightarrow 20 layers of ¹⁰B₄C

- **9 nRPC** units made with 0.3 mm thick float glass
- **1 nRPC** unit made with 0.5 mm thick

Electronic readout

X- and Y- strips waveforms

Charge PAs Timing amplifiers

ADC addon

48 ch 40 MHz streaming ADCs

DAQ - TRB3 (trb.gsi.de) 48 ch 10 ps TDC

(x, y) - event position reconstruction by **COG**

- \bullet S_i signals from the strips
- \bullet X_i, Y_i positions of the strips

$$
x = \frac{\sum X_i S_i}{\sum S_i} \quad y = \frac{\sum Y_i S}{\sum S_i}
$$

Tests at the BOA beamline at PSI

Results: nToF measurements

Results are in good agreement with BOA spectrum

[Jacopo Valsecchi et. Al., NATURE COMMUNICATIONS https://doi.org/10.1038/s41467-019-11590-2]

Tests at CT2 neutron beamline (λn=2.5 Å) at ILL

Results: PHS of cathode signals

RPC gas gap Index 1h 2h 3h 4h 5h 6h 7h 8h 9h 1l 2l 3l l: lower gas gap Flood dataset: HV=-2050 V; Att. Thickness: 4 x 2 mm + 1.8 mm **1h 9h** $\frac{1}{2}$ 1 **9h**

4l 5l 6l 7l 8l 9l h: upper gas gap

PHS are almost identical for all nRPCs gas gaps → Good uniformity of the gas-gap width

Results: Detection efficiency

 $1,2$

 $1,0$

 $0,8$

 $0,6$

 $0,4$

 $0,2$

 0.0

Measured relative DEs

3x2 mm Plexiglass

RPC₂

RPC₁

Relative DE: RPC 1-9 at -2050 V; V Slit; Th-35mV

Simulation results

Total Detection Efficiency (DE)

41.5% for λ n=2.5 Å

DEs follow the trend predicted by the simulation.

RPC3 RPC4 RPC5 RPC6

RPC7

RPC₈

RPC9

 ^{10}B ₄C layers thickness may differ slightly from the theoretical ones

Plateau knee at lower voltage than for 0.35 mm gas gap nRPCs but shorter

Results: Uniformity

Images recorded with the detector irradiated at different locations

- Beam collimation: 21 mm x 21 mm opening on a $B₄C$ sheet
- RPC 1-9 at -2050 V

Misalignment between the beam and the collimator opening is evident.

Almost the same response in both areas (profile overlap)

PHS (*all 9 RPC cathodes***) Detector irradiated in 7 different locations**

Max. peak deviation from its average ~2%

Results: Z-coordinate - nRPC gas gap identification

Results: Offset between arrays of strips (thin-film PCBs)

To determine the offset, the **x and y position** for the neutron events in the **lower gas gap of the nRPC1 was taken as a reference** (zero on the plots).

Results: Spatial resolution

- **Cd slit in contact with the detector window**
- Attenuators: 3 glass plates (2 mm thick each)
- RPC1-9 at HV= -2050 V; Th=35 mV
- Count rate ~ 19 kHz/cm^2

Spatial resolution performance as in the 1st small nRPC detector prototype: **FWHM < 0.3 mm**

Results: Spatial resolution

- Cd mask: 1 mm thick
- Letter grooves: 0.4 mm wide
- Diagonal groove: 0.3 mm wide

Excellent fidelity is observed in the reproduction of all Cd mask details

Images reconstructed for each individual ¹⁰B₄C layer

Results: Counting rate for nRPC 1 - 9 *(float glass)*

 $RPC1-9$: HV= -2050 V

Local counting rate is linear with beam intensity up to \sim 70 kHz/cm² (~15% deviation @ ~120 kHz/cm²)

Results: Counting rate for nRPC 1 - 9 *(float glass)*

Results: Counting rate for nRPC 10 *(LR- glass)*

RPC10 *(Low resistivity glass)* $(\rho \sim 1.5 \times 10^9 \Omega \text{ cm})$

Measurement performed with a wider Cd slit: 0.5 mm

No significant change is observed in the profile of the slit image with the nº of attenuators in the beam

Summary

-
- Experimentally demonstrated the capability of nRPC-4D detector to determine both the 3D position of the neutron capture and the neutron time-of-flight.
- Detector active area was increased by a factor of 4 in relation to the $1st$ small prototype
	- Spatial resolution stays below 0.3 mm FWHM *(no impact of the detector scaling)*
- The total detection efficiency (~42 %, λ n=2.5 Å) for the 9 nRPCs agrees well with the simulation prediction.
- Maximum counting rate of 70 kHz/cm² was achieved
- nRPC10 made from low resistivity glass is shown to sustain max. count rates >30 kHz/cm²
	- Suggests that reaching counting rates of a few hundred kHz/cm² with a nRPC-4D detector may become realistic.

Acknowledgements

CIÊNCIA, TECNOLOGIA
E ENSINO SUPERIOR

CEECINST/00106/2018/CP1494/CT0001

EXPL/FIS-NUC/0538/2021

CERN/FIS-INS/0006/2021

European Union's Horizon 2020 Research and Innovation programme under Grant Agreement AIDAinnova - No 101004761 27

Correction accounting to the DE dependence on neutron wavelength

Average sensitivity per RPC to 511keV (blue) and 1274.5 keV (red) gamma rays

Curved detector - Model inspired by

https://doi.org/10.1051/epjconf/202328603010

- 120 deg arc, 2300 mm diameter, 350 mm height
- Entrance window (Al alloy 5083) : 10.2mm
- Gas gap (3He:2.4+ArCO2:4.6 at 7 bar): 26 mm
- λ n = 1.8 Å;
- $\text{total DE} = 60.66\%$
- **● Not scattered: 50.01%;**
- **● Scattered: 10.65%**
- **● Indirect to direct fraction: 21%**

nRPC detector

- 5 double gap RPCs (10 layers of B4C)
- 1.5 μm thick B4C layer
- $λn = 1.8 Å;$
- $\text{total} \text{DE} = 27.95\%$
- **● Not scattered: 25.42%; Scattered: 2.53%**
- **● Indirect-to-direct fraction: 9.9%**

nRPC with low resistivity electrodes

Rate vs neutron flux (beam test at HZB)

$V_{eff} = V_{ap} - IR = V_{ap} - \left(\frac{I}{A}\right)\rho l$

- **V ap :** Applied voltage
- V_{off}: Effective voltage applied across the gap

I: Counting current drawn by the detector in area A

R: Electrical resistance seen by this current

P: DC bulk resistivity of the electrode resistive material

margato@coimbra.lip.pt 32