

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

EUROPEAN SPALLATION

Progress with the nRPC-4D detector concept for neutron scattering applications: *assessment of XYZ-position and nTOF readout capability in beam tests*

Luís Margato, A. Morozov, A. Blanco, J. Saraiva, L. Lopes, P. Fonte

Chung Chuan Lai, Per-Olof Svensson

B. Guerard and J. Marchal

Outline

- Introduction
- nRPC-4D detector design
- Detector prototype
- Experimental results
- Summary

Introduction

Motivation

The RPC detectors, introduced in the 80s by **R. Santonico, R.Cardarelli (1981)** [1] shows a strong potential for applications in Neutron Scattering Science (NSS) and Beyond.

The European Spallation Source is currently driving the development of new types of neutron detectors.

Main goal

Develop RPC-based neutron detectors able to satisfy modern NSS instrument requirements, such as:

- High (> 50 %) neutron detection efficiency
- Low gamma sensitivity
- High spatial resolution and nTOF capability
- High counting rate
- Affordable costs

[1] https://doi.org/10.1016/0029-554X(81)90363-3

Previous work

10 Double gap RPCs

- Active area: 8 cm x 8 cm
- Anodes: **0.5 mm** thick float glass
- Cathodes: **0.5 mm** thick Al
- Gas gap width: **0.35 mm**
- ${}^{10}B_4C$ layer: 1.15 µm

Detector tested at FRM II (MLZ)

- Detection Efficiency: $62.1\% (\lambda = 4.73 \text{ Å})$
- Spatial resolution (x and y): ~ 0.25 mm FWHM
- Gamma sensitivity (0.511 MeV) < 10^{-6}

L.M.S. Margato et al 2020 JINST 15 P06007

nRPC-4D detector design

 Standalone neutron detection modules: Double gap RPCs coated with ¹⁰B₄C to enable sensitivity to cold/thermal neutrons

$$n + {}^{10}B \rightarrow \begin{cases} {}^{7}\text{Li}(0.84 \text{ MeV}) + {}^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.47 \text{ MeV}), & 94\% \\ {}^{7}\text{Li}(1.01 \text{ MeV}) + {}^{4}\text{He}(1.78 \text{ MeV}), & 6\%. \end{cases}$$

nRPC-4D detector design

- Standalone neutron detection modules: Double gap RPCs coated with ¹⁰B₄C to enable sensitivity to cold/thermal neutrons
- Signal pickup: Thin film PCBs with parallel Cu strips for XY position readout

Thin film PBCs

- 25 µm thick polyamide
- 2 arrays of parallel mutually-orthogonal Cu strips: **Pitch = 1mm**; **Width = 0.3 mm**

nRPC-4D detector design

- Standalone neutron detection modules: Double gap RPCs coated with ¹⁰B₄C to enable sensitivity to cold/thermal neutrons
- Signal pickup: Thin film PCBs with parallel Cu strips for XY position readout
- Multilayer structure for high neutron detection efficiency: Stack of 10 nRPC modules

Optimization of the ¹⁰B₄C layers thickness

Simulations in Geant4 (v10.7.2) Detection Efficiency optimized by setting only 3 different possible thicknesses for the ${}^{10}B_4C$ Primary neutrons (4.7 Å) generated as a pencil beam with normal incidence at the center of the detector.

Optimized thicknesses for $(\lambda n = 4.5 \text{ Å})$

- **0.4 µm** for RPC 1 to 3
- **0.6 µm** for RPC 4 to 7
- **2.2 μm** for RPC 8 to 10

All ${}^{10}B_4C$ layer with the same thickness (1.15 μ m)

Identify the ${}^{10}B_4C$ layer where a neutron is captured

~ 0.2 mm

Observed shift in the reconstructed position, most likely due to a misalignment between the strip arrays for the Y- coordinate.

A. Morozov *et al* 2021 *JINST* **16** P08032

One possible solution: Pair of arrays of parallel Cu strips, mutually orthogonal.

0.50 mm FWHM

250

Ambiguity in the ${}^{10}B_4C$ layer where a neutron is captured

X_i (Y_j) strips, from each array, with the same index are interconnected and read by the same electronic channel

Timing and XYZ coordinates

Cathode signal (serves two purposes)

- Event timing \rightarrow **nTOF**
- Identification of the nRPC where a neutron is captured

Arrays of parallel Cu strips mutually orthogonal

• XY- coordinates

Triggered cathode + Difference in signal sum on strips x and y, X- sum signal > Y- sum signal Neutron capture in the top ${}^{10}B_4C$ layer of a nRPC

X- sum signal < Y- sum signal Neutron capture in the bottom ${}^{10}B_4C$ layer of a nRPC

• Z-coordinate

nRPC-4D prototype

Neutron detection module

Double gap RPC with the cathode coated on both sides with a layer of ${}^{10}B_4C$

Frame: FR4 Spacers: 0.28 mm diameter PEEK monofilament Cathode (190 mm x 190 mm):

- 0.3 mm thick aluminium
- Both sides coated with ¹⁰B₄C at the ESS Detector Coatings Workshop

Anodes (200 mm x 200 mm):

- 0.33 mm thick float glass
- External faces painted with resistive ink

EUROPEAN SPALLATION SOURCE

25

nRPC-4D prototype

10 nRPCs \rightarrow 20 layers of ${}^{10}B_4$ C

- **9 nRPC** units made with 0.3 mm thick float glass
- 1 nRPC unit made with 0.5 mm thick LR-glass provided by **Crispin W.**

Electronic readout

X- and Y- strips waveforms

)

Charge PAs Timing amplifiers

ADC addon

48 ch 40 MHz streaming ADCs

DAQ - TRB3 (trb.gsi.de) 48 ch 10 ps TDC

ħ			Positive polarity waveforms					(- 0 >
4	8	3	1	9	1	6	0	2	1
2	3	3	4	3	1	5	5	5	6
4	4	5	3	5	4	362	2988	4529	627
37	4	7	3	5	6	6	11	11	10
7	5	1	2	4	3	3	2	8	4
3	3	4	5	4	4	10	17	9	10
10	6	7	8	13	8	11	13	6	13
10	8	8	31	827	3236	715	5	7	4
0	0	0	0	0	0	5			

 $(x,\,y)$ - event position reconstruction by \boldsymbol{COG}

- S_i signals from the strips
- X_i , Y_i positions of the strips

$$x = \frac{\sum X_i S_i}{\sum S_i} \quad y = \frac{\sum Y_i S_i}{\sum S_i}$$

12

Tests at the BOA beamline at PSI

Results: nToF measurements

Results are in good agreement with BOA spectrum

[Jacopo Valsecchi et. Al., NATURE COMMUNICATIONS https://doi.org/10.1038/s41467-019-11590-2]

Tests at CT2 neutron beamline ($\lambda n=2.5$ Å) at ILL

³He-Multitube

Fission Chamber

Results: PHS of cathode signals

Flood dataset: HV=-2050 V; Att. Thickness: 4 x 2 mm + 1.8 mm

PHS are almost identical for all nRPCs gas gaps \rightarrow Good uniformity of the gas-gap width

Results: Detection efficiency

1,2

1,0

0,8

0,6

0,4

0,2

0.0

RPC1

Measured relative DEs

3x2 mm Plexiglass

Relative DE: RPC 1-9 at -2050 V; V Slit; Th-35mV

(GEANT4/ANTS3) * Contribution to DE, DE (a.u.) 0.6 μm 2.2 μm 0.4 µm 9 **RPC** index

Simulation results

Total Detection Efficiency (DE)

• 41.5% for λn=2.5 Å

DEs follow the trend predicted by the simulation.

RPC4

RPC6

RPC7

RPC8

RPC9

RPC5

¹⁰B₄C layers thickness may differ slightly from the theoretical ones

RPC3

RPC2

Plateau knee at lower voltage than for 0.35 mm gas gap nRPCs but shorter

Results: Uniformity

Images recorded with the detector irradiated at different locations

- Beam collimation: 21 mm x 21 mm opening on a B_4C sheet
- RPC 1-9 at -2050 V

Misalignment between the beam and the collimator opening is evident.

Almost the same response in both areas (profile overlap)

PHS (*all 9 RPC cathodes*) Detector irradiated in 7 different locations

Max. peak deviation from its average ~2%

Results: Z-coordinate - nRPC gas gap identification

Results: Offset between arrays of strips (thin-film PCEs)

Y-coordinate

To determine the offset, the **x** and **y** position for the neutron events in the lower gas gap of the nRPC1 was taken as a reference (zero on the plots).

Results: Spatial resolution

- Cd slit in contact with the detector window
- Attenuators: 3 glass plates (2 mm thick each)
- RPC1-9 at HV= -2050 V; Th=35 mV
- Count rate ~ 19 kHz/cm^2

Spatial resolution performance as in the 1st small nRPC detector prototype: **FWHM < 0.3 mm**

Results: Spatial resolution

- Cd mask: 1 mm thick
- Letter grooves: 0.4 mm wide
- Diagonal groove: 0.3 mm wide

Excellent fidelity is observed in the reproduction of all Cd mask details

Images reconstructed for each individual ¹⁰B₄C layer

Image corrected for the offset in the position of the XY strip arrays

Results: Counting rate for nRPC 1 - 9 (float glass)

• 0.2 mm wide Cd slit (@BMonitor)

• RPC1-9: HV= -2050 V

Local counting rate is linear with beam intensity up to $\sim 70 \text{ kHz/cm}^2$ (~15% deviation @ ~120 kHz/cm²)

Results: Counting rate for nRPC 1 - 9 (float glass)

Results: Counting rate for nRPC 10 (LR-glass)

RPC10 *(Low resistivity glass)* $(\rho \sim 1.5 \times 10^9 \Omega \text{ cm})$

Measurement performed with a wider Cd slit: 0.5 mm

No significant change is observed in the profile of the slit image with the nº of attenuators in the beam

Summary

- Experimentally demonstrated the capability of nRPC-4D detector to determine both the 3D position of the neutron capture and the neutron time-of-flight.
- Detector active area was increased by a factor of 4 in relation to the 1st small prototype
 - Spatial resolution stays below 0.3 mm FWHM (no impact of the detector scaling)
- The total detection efficiency (~42 %, $\lambda n=2.5$ Å) for the 9 nRPCs agrees well with the simulation prediction.
- Maximum counting rate of 70 kHz/cm² was achieved
- nRPC10 made from low resistivity glass is shown to sustain max. count rates >30 kHz/cm²
 - Suggests that reaching counting rates of a few hundred kHz/cm² with a nRPC-4D detector may become realistic.

Acknowledgements

CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR EXPL/FIS-NUC/0538/2021

CEECINST/00106/2018/CP1494/CT0001

CERN/FIS-INS/0006/2021

European Union's Horizon 2020 Research and Innovation programme under Grant Agreement AIDAinnova - No 101004761

Correction accounting to the DE dependence on neutron wavelength

Average sensitivity per RPC to 511keV (blue) and 1274.5 keV (red) gamma rays

Curved detector - Model inspired by

https://doi.org/10.1051/epjconf/202328603010

- 120 deg arc, 2300 mm diameter, 350 mm height
- Entrance window (Al alloy 5083) : 10.2mm
- Gas gap (3He:2.4+ArCO2:4.6 at 7 bar): 26 mm
- $\lambda n = 1.8 \text{ Å};$
- total DE = 60.66%
- Not scattered: 50.01%;
- Scattered: 10.65%
- Indirect to direct fraction: 21%

nRPC detector

- 5 double gap RPCs (10 layers of B4C)
- 1.5 µm thick B4C layer
- $\lambda n = 1.8 \text{ Å};$
- total DE = 27.95%
- Not scattered: 25.42%; Scattered: 2.53%
- Indirect-to-direct fraction: 9.9%

nRPC with low resistivity electrodes

Rate vs neutron flux (beam test at HZB)

$$V_{eff} = V_{ap} - IR = V_{ap} - \left(\frac{I}{A}\right)\rho l$$

V_{ap}: Applied voltage

 $\boldsymbol{V}_{\text{eff}}\text{:}$ Effective voltage applied across the gap

I: Counting current drawn by the detector in area A

R: Electrical resistance seen by this current

P: DC bulk resistivity of the electrode resistive material

margato@coimbra.lip.pt