

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Study of environment friendly SF₆ substitute for the Resistive Plate Chambers

Giorgia Proto

XVII International conference on Resistive Plate Chambers and Related Detectors

Santiago De Compostela

9-13 September 2024

1.Introduction to the search of alternative gas mixtures for the Resistive Plate Chambers

2. Replacement of the SF₆

3.Results of the tests performed under irradiation with several gas mixtures

4. Conclusions

RPC in avalanche mode with the standard gas mixture

- Low current (good longevity)
- High rate capability
- RPC in high radiation environment (like ATLAS)

- High current
- No sophisticated FE electronics needed
- Low rate experiment

Substitution of the $C_2H_2F_4$

Largest contribution to the GWP of the standard gas due to the Tetrafluoroethane (TFE) because it is the main gas component (94.7% for a total GWP ~ 1390)

1) Substitute the $C_2H_2F_4$ with an environment friendly gas mixture:

 $\frac{CO_2/C_3H_2F_4 + i-C_4H_{10} + 1\% SF_6}{GWP} \sim 200$

- 1. Reduction of the GWP
- 2. Concentration of $C_3H_2F_4$ strongly depends on the gas gap thickness
- 3. Larger production of fluorine molecules (possible faster aging) **2) Reduction of the** $C_2H_2F_4$ **concentration introducing** CO_2 (ATLAS intermediate):

 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + 1% SF₆ \longrightarrow GWP ~ (1017-1162)

- 1. No large impact expected on detector longevity in terms of fluorine production
- 2. Small reduction of the GWP

1 mm gas gap : efficiency vs HV vs $\%C_3H_2F_4$

1 mm gas gap : efficiency vs HV vs %CO2

HV (V)

5

The impact of SF₆

The SF_6 is the molecule with the largest GWP in the standard gas (22900)

All the alternatives to the $C_2H_2F_4$ require an increase in the SF_6 concentration in order to avoid streamers \rightarrow higher GWP

What happen if we reduce the SF_6 concentration in the ATLAS intermediate solution?

 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + 0.5% SF_6

Reduction of the GWP (1041 vs 1164)

Large increase of the currents due to transition (highcharge) events and/or streamers

 $CO_2/C_3H_2F_4$ +i- C_4H_{10} + 1% SF_6 $CO_2/C_3H_2F_4$ +i- C_4H_{10} + $C_3H_2ClF_3$

 \rightarrow Main advantage : Totally environment friendly gas mixture

Case 2 (main topic of this presentation)

 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + 1% SF_6 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + $C_3H_2ClF_3$

 \rightarrow Main advantage : Maximize the reduction of the GWP with NO impact on the detector performance $_{_7}$

Substitution of the SF₆ : Case 1

Possibility to replace the highest GWP molecule, the SF_6 , with an environment friendly gas: the CI_{1} F_{2} Chlorotrifluoropropene ($C_3H_2ClF_3$)

$CO_2/C_3H_2F_4 + i - C_4H_{10} + C_3H_2ClF_3 -$

GWP ~ 10 (100 times less than the standard gas!!)

Possibility to operate the RPC with a <u>totally</u> environment-friendly gas mixture for the first time (G. Proto *et al* 2022 *JINST* **17** P05005)

Substitution of the SF₆ : Case 2

- 1.Premature presence of streamers/transition events \rightarrow high current and low rate capability
- 2. High current under irradiation \rightarrow aging and low rate capability
- 3. Long term effects \rightarrow Study of the behaviour of the gas after integrating the corresponding HL-LHC charge
- 1. Decouple the contribution of the $C_3H_2ClF_3$ from the other gases

 $C_2H_2F_4 + i-C_4H_{10} + C_3H_2ClF_3 \longrightarrow$ The behaviour of $C_2H_2F_4$ is well known cited above due to $C_3H_2ClF_3$

2. Application to case 2

 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + $C_3H_2ClF_3$

- Opportunity to start to replace the SF_6
- Possibility to reduce the $C_2H_2F_4$ by increasing the $C_3H_2ClF_3$ with an improvement of the GWP

Measurement strategy

Gas mixtures studied:

Topic of this presentation : Study of the performance of these gas mixtures in presence of ATLAS HL-LHC background

Results STD vs MIX1 vs MIX2 : Study of the efficiency

MIX2

Results : Study of the efficiency under irradiation

Maximum rate in ATLAS RPC during HL-LHC ~ 500 Hz/cm²

Results : Comparison at 92% efficiency

Currents at 92% efficiency at different irradiation : no irradiation, 235 Hz/cm² and 448 Hz/cm²

The currents at the WP are at the same order of magnitude within 1% up to 448 Hz/cm²

The C₃H₂ClF₃ shows the same behaviour of the SF₆ with no impact in the detector performance

Results STD vs MIX3 vs MIX4 : Study of the efficiency

1. MIX3 : $63.3\%C_2H_2F_4/30\%CO_2/4.7\%i-C_4H_{10}/2\%C_3H_2ClE_3$

2. MIX4 : 53.3%*C*₂*H*₂*F*₄/40%*CO*₂/4.7%i-*C*₄*H*₁₀/<u>2%</u>*C*₃*H*₂*CL*<u>F</u>₃

The working point is shifted $\,$ by ~ 200 V (MIX4) and ~ 300 V (MIX3) wrt the standard gas

The plateau efficiency of the standard gas, 95%, is 3% higher wrt the mixtures containing $CO_2 \rightarrow$ less active target

This result is consistent with the one obtained with $C_2H_2F_4/CO_2/\%$ i- C_4H_{10}/SE_6 gas mixtures

Nucl.Instrum.Meth.A 1066 (2024) 169580

Results : Study of the efficiency under irradiation

The efficiency plateau drop under irradiation is:

1) 253 Hz/ cm^2 : 0% for the standard gas, 1% for the other mixtures

2) 448 Hz/ cm^2 : 0% for the standard gas, 2% for the other mixtures

The currents at WPs are : $I(30\%CO_2) = 1.5 \cdot I(STD)$, $I(40\%CO_2) = 1.7 \cdot I(STD)$,

Same results with $C_2H_2F_4/CO_2/i-C_4H_{10}/SF_6$ gas mixtures (Nucl.Instrum.Meth.A 1066 (2024) 169580)

The $C_3H_2ClF_3$ has the same performance as the $SF_6 \rightarrow$ It can efficiently substitute the SF_6 ¹⁶

In this presentation a good alternative to the SF_6 , the $C_3H_2ClF_3$, has been studied, testing the following gas mixtures:

1. MIX1 : 94.7% $C_2H_2F_4/4.7\%$ i- $C_4H_{10}/0.6\%$ $C_3H_2ClF_3$

2. MIX2 :94.3% $C_2H_2F_4/4.7\%$ i- $C_4H_{10}/1\% C_3H_2ClF_3$

3. MIX3 : 63.3%*C*₂*H*₂*F*₄/30%*CO*₂/4.7%i-*C*₄*H*₁₀/2% *C*₃*H*₂*ClF*₃

4. MIX4 : 53.3% $C_2H_2F_4/40\%CO_2/4.7\%$ i- $C_4H_{10}/2\%C_3H_2ClF_3$

The results show that the $C_3H_2ClF_3$ can replace the SF₆ without any degradation of the RPC overall performance.

This is a groundbreaking achievement with significant implications for future developments

Final step: certification of its long-term aging performance

THANK YOU!!! Questions are welcome

Backup

Results : Currents under irradiation

Here I have to modify the slides \rightarrow current with lower threshold

•Operating the RPC with C₃H₂F₄/CO₂-based gas mixtures: the transition events

Interpretation: streamers precursor, representing those events in which the delayed avalanches don't merge together to form the streamer but they ionize the gas: the CO_2 produces many photons which produce secondary electrons that ionize the gas but are not able to trigger the streamer because they are restrained by the HFO.

2

Operating the RPC with C₃H₂F₄/CO₂-based gas mixtures: the transition events

Signals classification

Signal type	Prompt charge (pC)	Time over threshold (ns)	Exceeding charge (*)
Avalanche	≤ 5	< 12	-
Transition	5 < q < 3	0 > 12	> 0.21
Streamer	≥ 30	≥ 30	-

2

Current study

- ϵ_{norm} = efficiency to MIPs normalized to the plateau asymptotic efficiency value
- I = photon current

Conclusion

The photon contribution to the detector current is independent from the gas mixture at the same normalized efficiency.

ECOGAS might guarantees same aging and same rate capability as the standard gas mixture working with 1 fC threshold \rightarrow still to be demonstrated

RPC operating with CO_2/F -HFO/ i- C_4H_{10}/Cl -HFO : lonic charge

- The ionic charge of the mixture without Cl-HFO reaches very high values (~ 75 pC) at low efficiency
- The mixture with 5% and 6% Cl-HFO have an ionic charge more than 30 pC at the first plateau value
- The mixture with 1% Cl-HFO shows the lowest ionic charge for $\epsilon < 94\%$
- The mixture with 2% Cl-HFO shows the lowest ionic charge for $\epsilon > 94\%$

Optimal choice : 2% Cl-HFO due to the lower ionic charge

Conclusion

ECOGAS for the ATLAS Phase-2 upgrade: primary clusters

Not all primary clusters have the same probability to give a detectable signal: those generated near the anode give a small number of electrons, which will not go above the discriminator threshold.

Interpretation of the detector inefficiency as the probability to have zero effective primary ionization:

$$\begin{split} 1 - \epsilon_{intr} &= P(0) = e^{-_{effective}} \\ < n_p > &= ln(\frac{1}{1 - \epsilon_{intr}}) \end{split}$$

The 1 mm gas gap needs double the F-HFO concentration wrt the 2 mm gas gap to exploit all the clusters available for the multiplication and detection. In the saturation plateau, the effective clusters in the 1 mm gas gap are half those available in the 2 mm gas gap

Decreasing the threshold

(a.u.)

Current

High Voltage (a.u.)

If the RPC is operated with a certain threshold **Thr1**, its characteristic **efficiency curve** () and **current** () will be obtained

Moving the threshold from **Thr1** to a lower one **Thr2**, the efficiency curve will move to lower voltages, without loosing its shape (

The curve of the trend of the current will **NOT** move accordingly

Possibility to work at the same efficiency with lower current

Effect of decreasing the threshold

High Voltage (a.u.)

Substitution of the $C_2H_2F_4$

Largest contribution to the GWP of the standard gas due to the Tetrafluoroethane (TFE) because it is the main gas component (94.7% for a total $GWP \sim 1390$)

- 1) Substitute the $C_2H_2F_4$ with an environment friendly gas mixture:
- $CO_2/C_3H_2F_4$ +i- C_4H_{10} + 1% $SF_6 \longrightarrow \text{GWP} \sim 200$
 - 1. Reduction of the GWP
 - 2. Larger production of fluorine molecules (faster aging)
- 2) Reduction of the $C_2H_2F_4$ concentration introducing CO_2 (ATLAS intermediate):

 $CO_2/C_2H_2F_4$ +i- C_4H_{10} + 1% $SF_6 \longrightarrow GWP \sim (1017-1162)$

- 1. No large impact expected on detector longevity in terms of fluorine production
- 2. Small reduction of the GWP

Tetrafluoroethane ($C_2H_2F_4$) molecule

Tetrafluoropropene ($C_3H_2F_4$) molecule

