

The miniTRASGO Cosmic Ray Telescope

XVII Conference on RPCs and Related Detectors Sep 10th, 2024

<u>C. Soneira-Landín</u>, J. A. Garzón, A. Blanco, L. Lopes, J. Saraiva, G. Kornakov, M. Seco csoneira@ucm.es

Table of contents

• Introduction

the problem of measuring Cosmic Rays flux

• Our solution

the miniTRASGO Cosmic Ray Telescope

• RPCs in miniTRASGO

understanding the device

Forbush Decrease

on March 2024

• Conclusions

and a look into the future

Introduction

The problem of measuring the Cosmic Rays flux

Primary Cosmic Rays generate Extensive Air Showers typically 20-50 km of altitude

Primary Cosmic Rays are mostly protons and light nuclei...

so they are affected by – galactic, solar, terrestrial – **magnetic fields**

Our proposal

The miniTRASGO Cosmic Ray Telescope

The TRASGO project

Muons, electrons...

- Measure secondary charged cosmic rays with tracking
 Not only counts, but angular counts!
- TRASGO concept: **TRAck reconStructinG bOx**

TRISTAN

STRATOS

TRAGALDABAS

The <u>HUGE</u> TRASGO ???

The miniTRASGO !

The miniTRASGO !

Main features:

- Versatile and **compact**
- Not cost demanding
 - **<12000 euro!**
- Standardizable
- Stable

The miniTRASGO !

Main features:

- Versatile and **compact**
- Not cost demanding
 - о <12000 еиго!</p>
- Standardizable

Ideal for a network!

... are they good counting detectors?

RPCs in miniTRASGO

Understanding the device

RPC summary

- 4 parallel square Multigap glass RPC
 - 3 glass layers, 2 mm each
 - 2 gaps, 1 mm each (nylon monofilaments)
- High Voltage: WP ~5.52 kV/gap (painted glass)
- **Resistivity**: 10 MΩ/cm² = **10⁷ Ω/cm²**
- Gas: R134a, flux of 1 kg/month
- Active area: 30x30 cm, approx. 0.1 m²

Asymmetric parallel Cu strips read in Front and Back 32 channels

Compact and autonomous

Only three connections:

- **Power** (standard plug)
- Gas bottle (15 kg)
- **Ethernet** (not required)

Includes:

 environment sensors, flowmeters, DAQ and a PC for data analysis and storage

Measure: time and charge in F and B per strip

Cluster size

- ~80% of events leave charge in only one strip
- ~10-20 % of events in two strips
- ~5% in three

But first, charge spectra must be understood

Norm. number of strips fired per RPC from 2024-09-07 00.51.51 to 2024-09-08 00.15.35

We learn:

- 1 ns of QtW charge is a reasonable upper bound for the crosstalk charge.
- Cluster Size = 3 cases are mainly caused by crosstalk, so in practice can be considered Cluster Size = 2

Crosstalk and Cluster Size 3 study

Madrid - Two minimum charges per strip in triple hits from 2024-09-07 00.51.51 to 2024-09-08 00.15.35

And sharing goes uniformly from 10% to the 50% of charge

If the mean strip width is **63 mm**:

- Induction section = 2 × 9.8
 mm = 20 mm = ~2 cm
- Consistent with the resistivity of these RPCs: 10⁷ Ω/cm²

Ratio of shared charge in double hits from 2024-09-07 00.51.51 to 2024-09-08 00.15.35

Grafana and Telegram control

<	Back minGO_Madrid	(and a
	/create_report: creates the pdf report. /send_original_report: send the pdf report enerated in the mingo itself. /send_monitoring_report: send the pdf report with he information per channel. /send_daq_report: send the pdf report of charges nd multiplicities processed over one day. /send_results_vs_time_report: send the pdf report f evolution of some quantities as well as logs. /send_weekly_results_report: same, but for the revious week.	
	mergency and assistance: /restart_tunnel: closes the tunnel so it reopens utomatically. 15:00	
)-)_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{	/send_external_environment 15:01	
Alter Alter	Date T (°C) RH (%) P (mbar) _{15:01}	
	024-09-09 10:30:04 20.5 37.0 944.8 024-09-09 10:45:03 20.8 36.8 944.8 024-09-09 11:00:04 20.0 37.0 944.6	
л Ш.	024-09-09 11:15:03 20.8 37.1 944.5 024-09-09 11:30:04 21.0 36.9 944.3 024-09-09 11:45:03 19.7 38.9 944.2 024-09-09 12:00:05 20.6 37.4 943.9 024-09-09 12:15:03 20.9 37.1 943.9	
Ę	024-09-09 12:30:04 19.5 39.1 943.8 024-09-09 12:45:03 20.5 37.6 943.7	

The system is stable

Efficiency: dependence on Temp and Pres...

... but efficiency over several days has no large variations

Forbush Decrease

On March 2024

Asymmetries in angular regions

35

FD starts on March 24th at 12:00 CET Reaches the minimum at 22:00 CET, **10 hours later**

Conclusions

and a look into the future

Future prospects

- Stable, not expensive, standardizable secondary charged cosmic ray detector presented
- Forbush Decrease detection
 → good counting detector
- Tracking allows

• Working as a network (next talk)

 \rightarrow open the realm of $muon \; Earth \; coverage$

Thank you! Questions?

The miniTRASGO Cosmic Ray Telescope

XVII Conference on RPCs and Related Detectors Sep 10th, 2024

<u>C. Soneira-Landín</u>, J. A. Garzón, A. Blanco, L. Lopes, J. Saraiva, G. Kornakov, M. Seco csoneira@ucm.es

Back-up slides

for those curious

Analysis of Event Distribution

- **80%** of total events are in only one strip.
- 20% in two strips, we check numbers in histogram of charge ratio min/max:
 - **78%** are double adjacent sharing charge \rightarrow **15%** of total events.
 - \circ 23% are actually single hits \rightarrow 5% of total events.

Classification Breakdown

- **85%** of total events = one particle in the interior of one strip (80% + 5%).
- **15%** of total events = one particle between two strips.

Ionization Section

- If the mean strip width = **63 mm**:
 - Ionization section = 2 × 9.8 mm = 20 mm (2 cm).
 - Consistent with the resistivity of these RPCs

Uncorrected counts, Start FD: 2024-03-24 12:00:00, Min FD: 2024-03-24 22:00:00

DAQ Overview

- Front-end electronics (FEE): Developed for the HADES detector (GSI).
 - Daughterboards (DB): Converts RPC signals into LVDS (Low Voltage Differential Signal) using Hidronav technology. Key features:
 - Motherboard (MB): Powers DBs and transfers LVDS to the TRB.
- **TRB3sc** (Time-of-Flight Reconstruction Board): From HADES experiment.
 - **32** Time-to-Digital Converters (TDC).
 - Inputs LVDS from DB.
 - Outputs **digital timestamp** and **signal length** via USB.