## RPC Commissioning at CODEX- $\beta$

#### Michael Peters

on behalf of the CODEX-b collaboration

10 September 2024



#### Overview

- We want to search for displaced decays-in-flight of exotic long-lived particles (LLPs).
- These LLPs emerge from many BSM scenarios (hidden or dark sectors).
- To do this, we want to look in an important region of phase space (Higgs to light LLPs) to complement the reach of existing LHC experiments.



#### CODEX-b

- The COmpact Detector for EXotics at LHCb (CODEX-b) is a proposed transverse detector.
- 10m cube of five-hundred 2m x 1m triplet RPC panels arranged into six external faces and four internal faces along the x-axis.
- Near-zero background by lead shield, shield veto, and concrete wall
- More details: arxiv:2203.07316, arxiv:2406.12880



## $\mathsf{CODEX}\text{-}\beta$

 Codex-β is a small-scale demonstrator of Codex-b: a 2m cube of fourteen 2m × 1m triplet RPCs to be placed in the currently empty LHCb server room.

Goals:

- Validate background estimates. Same location as full detector.
- Establish proof of principle. We are using these RPCs for tracking.
- Integrate with LHCb software trigger. We want to use CODEX-b trigger save events in LHCb.
- We will use the pp collisions from the collision point of the LHCb experiment.





- Based on BIS7 RPC design from ATLAS Phase-2 upgrade.
  - Usual benefits: fast, cheap, compact, and modular
- **Triplet:** three RPC "singlets" stacked together. Requiring hit coincidence reduces trigger noise.
- Orthogonal strip panels provide 2D hit positions.



- For testing our RPCs, we use the "standard" gas mixture: 94.7% R-134a (1,1,1,2 tetrafluoroethane), 5% isobutane, and 0.3% SF6 (sulfur hexafluoride).
- For Codex-β, we plan to use a modified gas mixture: 30% CO2, 64% R-134a (1,1,1,2 tetrafluoroethane), 5% isobutane, and 1% SF6 (sulfur hexafluoride).
- We want to use and test an eco-gas mixture after full commissioning with the standard gas mixture. The current thought is: HFO + variable % of CO2.

### Commissioning data flow

- We use cosmic muons for testing.
- Cosmic muons create an electron avalanche in gas gap.
- Current in strip panels converted to low voltage differential signal by front end electronics (want good timing resolution).
- Signals sent through trigger logic to produce a signal only for valid hits.
- Hits and trigger sent to time-to-digital converter (TDC).
- TDC interfaces with a computer for further data analysis.



# Trigger logic

- One trigger board per triplet layer (top, mid, bot).
- Coincidence unit for each permutation of layer pairs.
- Trigger on coincidence of at least two layers.
- FI/FO collects the coincidences and outputs a single trigger signal.
- Trigger signal is then sent to the TDC, which is combined with the digitized hit data.



DAQ software then handles data acquisition and manipulation in four phases:

- **Acquisition** TDC operation and raw data collected.
- Conversion Raw data converted to global channel number and time measurement.
- **One Analysis** Testing variables calculated.
- Iotting

#### Commissioning tests

- We test for the overall performance of our detectors. Data collection lasts for one minute per test.
- We also test for gas leaks (3 mbar, failure if  $\Delta p = .1$  in 3 mins) and "voltampermetric" data.

| нv                           | Trigger | Test Name                                         |  |
|------------------------------|---------|---------------------------------------------------|--|
| Off                          | OFF     | Electronic Noise                                  |  |
| Off                          | ON      | Correlated Electronic Noise                       |  |
| 4000V                        | OFF     | Electronic Noise due to HV                        |  |
| 1-Ly On<br>@WP / 2-Ly<br>Off | ON      | Independence Test                                 |  |
| 2-Ly On<br>@WP / 1-Ly<br>Off | ON      | Fake Muon Check (correlated noise due to chamber) |  |
| All-Ly On<br>@WP             | OFF     | Chamber Noise                                     |  |
| All-Ly On<br>@WP             | ON      | Cable Check                                       |  |
| 2-Ly On / 1-<br>Ly HV scan   | ON      | Efficiency Scan, Overall checks & performance     |  |

We expect to see hits at the same channel number in the same time window between two singlets (this would be a trigger).



Michael Peters

#### Efficiency scan

Efficiency of a given layer is calculated as the ratio of hits in the other two layers at working point to hits in all three layers, in the same channel. Want efficiency  $\geq$ 98% when all channels are at working point (5800 V).



RPC Commissioning at CODEX- $\beta$ 

"Want efficiency  $\geq$ 98% at 5800 V"...which we get!



Michael Peters

### Conclusion

- CODEX-b is a proposed RPC tracking detector to search for LLPs in an unexplored transverse region.
- Codex-β is the prototype under construction to validate background models, use of RPCs for tracking, integration with LHCb, and use of eco-gas mixture.
- RPC commissioning is proceeding successfully for Codex-β.
- 41/42 singlets built, 10/14 triplets pass commissioning tests, remaining 4 not yet commissioned.
- We're soon moving underground to begin installing Codex-β.
  - Target: Winter 2024 Spring 2025 and data taking 2025.
- Call for collaborators!





Proposal: arXiv:1708.09395 Expression of interest: arXiv:1911.00481 Snowmass whitepaper: arXiv:2203.07316 Technical design report: arXiv:2406.12880

#### Front end boards



v pup Output Input Voltage<sup>†</sup> Without Φ Output Signal Width distribution Signal Preliminary Counts With Signal Width (ns) Time

Front end electronics amplify the signal from the gas gap, output hits as a falling-edge LVDS pulse.

# Commissioning tests

| Comissioning Tests          |              |                         |                |                                                                                                                                                                                            |  |  |
|-----------------------------|--------------|-------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name                        | Trigger Mode | High Voltage (V)        | Number of Runs | Notes                                                                                                                                                                                      |  |  |
| Electronic Noise            | Off          | 0                       | 1              | Tests for hits generated by the low voltage supplied to the front end boards. Ideally no hits are seen.                                                                                    |  |  |
| High Voltage Noise          | Off          | 4000                    | 1              | Tests for hits generated by the high voltage supplied to the modules. Ideally no hits are seen.                                                                                            |  |  |
| Chamber Noise               | Off          | 5800                    | 1              | Tests for the rate of noise relative to the rate of muon hits.                                                                                                                             |  |  |
| Correlated Electronic Noise | On           | 0                       | 1              | Tests to make sure the electronic noise hits are eliminated by the trigger.                                                                                                                |  |  |
| Independence                | On           | 1 @ 5800, 2 @ 0         | 3              | Test to make sure there are no hits<br>being recorded in the test layer,<br>because the high voltage is turned off<br>for the other two so they won't be able<br>to trigger on muons.      |  |  |
| Fake Muon                   | On           | 2 @ 5800, 1 @ 0         | 3              | Test to make sure there are no FINE<br>hits being recorded in the test layer,<br>because the high voltage is turned off<br>for the test layer so no muons should<br>be detected.           |  |  |
| Trigger Check               | On           | 5800                    | 1              | Tests the module how it will be when actively taking data underground.                                                                                                                     |  |  |
| Efficiency Scan             | On           | 1 @ 4800-6000, 2 @ 5800 | 39             | Keep two layers at working point, test<br>the other layer in 100 volt increments<br>from 4800V to 6000V. The efficiency of<br>the test layer should increase from ~0<br>to (ideally) 100%. |  |  |
| Michael Peters              | RPC C        | ommissioning at CODEX-B |                | 10 September 2024 17 / 1                                                                                                                                                                   |  |  |

## Results (fake muon)



# Results (fake muon)



#### Mid-Bot

ALL Fired Channels, TOP MID . e



ALL Fred Channels, TOP BOT +

ALL Fired Channels, TOP BOT . o



ALL Fired Channels.MID BOT n

ALL Fired Channels MID BOT o



Michael Peters

RPC Commissioning at  $CODEX-\beta$ 

10 September 2024 19 / 14

3

イロン イ理 とくほとう ほんし