XVII Conference on Resistive Plate Chambers and Related Detectors

Simulating MRPCs with Garfield++ and time-dependent weighting potentials

Djunes Janssens

djunes.janssens@cern.ch

September 12th, 2024

Introduction

Outline:

- Garfield++ MRPC simulation
 - Grid-based avalanche method
 - Mixed method approach
- Signal formation
 - Ramo-Shockley theorem
 - Ramo-Shockley theorem extension for conductive media
 - Weighting potentials and signals in (M)RPCs
 - Signals in the presence of a thin resistive layer
- Conclusion

Introduction

Outline:

Garfield++ MRPC simulation

- Grid-based avalanche method
- Mixed method approach

Signal formation

- Ramo-Shockley theorem
- Ramo-Shockley theorem extension for conductive media
- Weighting potentials and signals in (M)RPCs
- Signals in the presence of a thin resistive layer
- Conclusion

Introduction

The simulation approach for MRPCs relies heavily on a developed method that provide a one-dimensional description of avalanche dynamics using a grid-based approach.

INSTRUMENTS A METHODS IN PHYSICS RESEARCH Sector A Sector A www.elsevier.nl/ocate/nima	Available online at www.sciencedirect.com SGIENCS OF INFORMATION ELSEVIER Nuclear Instruments and Methods in Physics Research A 500 (2003) 144-162
The simulation of resistive plate chambers in avalanche mode: charge spectra and efficiency	Detector physics and simulation of resistive plate chamb
 M. Abbrescia^{a,*}, A. Colaleo^a, G. Iaselli^a, F. Loddo^a, M. Maggi^a, B. Marangelli^a, S. Natali^a, S. Nuzzo^a, G. Pugliese^a, A. Ranieri^a, F. Romano^a, S. Altieri^b, G. Bruno^b, G. Gianini^b, S.P. Ratti^b, L. Viola^b, P. Vitulo^b 	Werner Riegler*, Christian Lippmann, Rob Veenhof EP Dation, CERN, CH-1211 Conva. 23, Switzerland Received 17 June 2002; received in revised form 7 October 2002; accepted 19 November 2002
⁴ Dipartimento Interateneo di Fisica and Sectone INFN, Bari, Italy ⁴ Dipartimento di Fisica Nucleare e Teorica and Sectone INFN, Patsia, Italy Received 26 October 1995; received in revisio form 18 March 1999	Abstract We present a simulation model suited to study efficiency, timing and pulse-height spectra of Resistiv
Abstract A model to simulate the avalanche formation process and the induced signal in a Resistive Plate Chamber is presented. A first investigation of the effects of various parameters on the performance of this detector is reported. © 1999 Published by Elsevier Science B.V. All rights reserved.	electronics, we apply the model to timing RPCs with time resolution down to 50 ps and trigger RPCs wit © 2003 Elsevier Science B.V. All rights reserved. <i>PACS</i> : 07.05.Tp; 29.40.Cc; 29.40.Cs <i>Keywords</i> : RPC; Simulation; Signah; Detector physics; Timing; Efficiency
A Introduction Resistive Plate Chambers (RPCs) [1] are detech for or iso roizing particles presently used in main liferent experiments performed both with cosmi- matrix and a large background of he first level much in these experiments, RPCs will be requested to this hand a large background of neutrons and γ_{ays} , producing an effective (i.e. taking into account PC ensuivity) hit rate up to - 300 Hz/cm ² [2]. I is well known that RPCs operated in streamed the (the known that RPCs operated in streamed to (the known that RPCs operated in the streament data collection is solid and a compre- hensive theoretical model able to explain and the sing of detector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing of advector is poor, and a compre- hensive theoretical model able to explain and the sing	1. Introduction Resistive Plate Chambers, pioneered during the 19956 [1,2] and developed into Multi Cap Resistive Plate Chambers during the 1996b [3], have become an integral part of present HDP events of the 1996b [3], have become an integral part of present HDP events of the 1996b [3], have become an integral part of present HDP events of the 1996b [3], have become propagation in RPCs can be found in Refs. [4,5], nd efficiency to study the 'order or physics of high fields, like the change in avalanche ""Corresponding without Tel." +14:22:673:7385. The Madewer, wenterspringer, edit (Kingdor).

5

The gas volume is subdivided into a 3D grid, with electrons snapped to the nodes and propagated along the drift direction. The avalanche development is modeled using swarm parameters and the **Legler model**.

To approximate space-charge suppression, growth is capped at 1.6*10⁷ electrons.

W. Legler, Z. Naturforschung. 16a (1961) 253.C. Lippmann, W. Riegler, NIM-A 517 (2004) 54–76.See <u>presentation</u> of Supratik Mukhopadhyay.

RD51–NOTE-2011-005, by Paulo Fonte. RD-51 Open Lectures by Filippo Resnati. See <u>presentation</u> of D. Bošnjaković.

To accurately represent the early fluctuations' impact on the induced charge distribution, microscopic tracking in Garfield++ is used. After a set time (~ 50 - 100 electrons), the method switches to the grid model, forming a 'mixed method' approach.

Ramo-Shockley theorem

Ramo-Shockley theorem

The Ramo-Shockley theorem allows the current induced by an externally impressed charge density on any electrode to be calculated using a so-called weighting potential $\psi(x)$.

$$I_i(t) = -\frac{q}{V_w} \mathbf{E}_i(\mathbf{x}_q(t)) \cdot \dot{\mathbf{x}}_q(t)$$

$$\mathbf{E}_i(\mathbf{x}) = -
abla \Psi_i(\mathbf{x})$$

This static $\psi(x)$ can be calculated for a grounded electrode using the following step:

- Remove the drifting charges
- Put the electrode at potential V_w
- Grounding all other electrodes

Signal in a non-resistive Micromegas

Let us consider a Townsend avalanche inside the amplification gap of a parallel plate-type detector that induces a signal on the anode plane.

Ramo-Shockley theorem extension for conducting media

Ramo-Shockley theorem extension for conducting media

In detectors with resistive elements, signal timing depends on both charge movement in the drift medium and the time-dependent reaction of resistive materials.

$$I_{i}(t) = -\frac{q}{V_{w}} \int_{0}^{t} \mathbf{H}_{i} \left[\mathbf{x}_{q} \left(t' \right), t - t' \right] \cdot \dot{\mathbf{x}}_{q} \left(t' \right) dt'$$

$$\mathbf{H}_{i}(\mathbf{x},t) \coloneqq -\nabla \frac{\partial \Psi_{i}(\mathbf{x},t) \Theta(t)}{\partial t}$$

The dynamic weigting potential $\psi_i(\mathbf{x}, t)$ can be calculated:

- Remove the drifting charges
- Put the electrode at potential Vw at time t = 0
- Grounding all other electrodes

Ramo-Shockley theorem extension for conducting media

The time-dependent weighting potential is comprised of a static prompt and a dynamic delayed component:

$$\psi_i(\mathbf{x},t) \doteq \psi_i^p(\mathbf{x}) + \psi_i^d(\mathbf{x},t)$$
 where $\psi_i^d(\mathbf{x},0) = 0$

The current induced by a point charge q is given by:

Weighting potentials of (M)RPCs

Delayed component of the signal

A charge q moves at a constant velocity through the gas gap before reaching the bulk resistive layer that separates it from the anode.

W. Riegler, NIM-A 535 (2004) 287-293 Here we took $\epsilon_r = 1$.

Delayed component of the signal

Given the typically high volume resistivities of O(10⁹ - 10¹²) Ω ·cm in RPCs, the delayed component is negligible.

Time t/T [1]

W. Riegler, NIM-A 535 (2004) 287–293 Here we took $\epsilon_r = 1$.

Weighting potentials of (M)RPCs

The analytical expression for the prompt weighting potential of rectangular electrodes within an N-layer geometry has been implemented in the new 'ComponentParallelPlate' class in Garfield++.

$$\psi^{w}\left(\tilde{x}', y_{m}\right) = \frac{2V_{w}}{\pi} \int_{0}^{\infty} \cos\left(k\left(\tilde{x} - \tilde{x}'\right)\right) \sin\left(\frac{kw_{x}}{2}\right) \frac{\varepsilon_{1}}{k^{2}} \left. \frac{\partial f_{m1}(k, y)}{\partial y} \right|_{(y=y_{0})} dk$$

An example simulation of a 6-gap MRPC

Using the mixed-method approach, an event can be simulated in less then 0.3 s.

D. Stocco is extending this approach to the 2D model of C Lippmann. <u>https://indi.to/c9hfk</u>

Measurements taken from M. Shao et al., NIM-A 492 (2002) 344–350. Simulation performed for $iC_4H_{10}/SF_6/C_2H_2F_4$ (5/5/90%).

What about the resistive HV electrode?

π

CÊRN

EΡ

R&D

The dynamic weighting potential was calculated using COMSOL and then applied in Garfield++ for induced signal calculations. For graphite layers with O(100 k Ω/\Box), the signal induced by electrons remains unaffected.

COMSOL Multiphysics: <u>https://www.comsol.ch</u>

Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459.

19

Garfield++ simulations of resistive particle detectors

Using the finite element method, dynamic weighting potentials can be numerically obtained for a wide range of resistive detectors.

An (incomplete) list of resistive detectors:

- Multi-gap Resistive Plate Chambers (MRPC)
- Surface Resistive Plate Counter (sRPC)
- MicroCAT's two-dimensional interpolating readout¹
- µ-Resistive WELL
- µ-Resistive plate WELL
- Small-pad resistive Micromegas
- Resistive-strip bulk Micromegas
- Resistive PICOSEC Micromegas
- Un-depleted-silicon Sensors
- Resistive Silicon Detectors (RSD)
- 4D Diamond Sensor

RPC MPGD Resistive-strip bulk Micromegas

Garfield++ simulations of resistive particle detectors

Using the finite element method, dynamic weighting potentials can be numerically obtained for a wide range of resistive detectors.

An (incomplete) list of resistive detectors:

- Multi-gap Resistive Plate Chambers (MRPC)
- Surface Resistive Plate Counter (sRPC)
- MicroCAT's two-dimensional interpolating readout¹
- µ-Resistive WELL
- µ-Resistive plate WELL
- Small-pad resistive Micromegas
- Resistive-strip bulk Micromegas
- Resistive PICOSEC Micromegas
- Un-depleted-silicon Sensors
- Resistive Silicon Detectors (RSD)
- 4D Diamond Sensor

Conclusion

Using Garfield++, the MRPC response can be calculated from avalanche development to signal formation.

- For more efficient large-scale avalanche calculations, a mixed method is used: starting with microscopic electron tracking, followed by the Legler model.
- Garfield++ and COMSOL are used to model signal formation in detectors with resistive elements, applying an
 extended Ramo-Shockley theorem. A scan of different graphite layer surface resistivities showed results
 consistent with literature, confirming the prompt component's dominance.
- This approach applies to complex detector layouts in resistive gaseous detectors (RPCs, resistive MPGDs) and solid-state detectors.

Outlook:

- The grid-based method can be adapted for avalanche descriptions in SiPMs.
- A combined method will be implemented, using "super charges" that can be tracked microscopically.

Thank you for your attention!

