XVII Conference on Resistive Plate Chambers and Related Detectors

Simulating MRPCs with Garfield++ and time-dependent weighting potentials

Djunes Janssens

djunes.janssens@cern.ch

September 12th, 2024

Introduction

Outline:

- **Garfield++ MRPC simulation**
	- Grid-based avalanche method
	- Mixed method approach
- **Signal formation**
	- Ramo-Shockley theorem
	- Ramo-Shockley theorem extension for conductive media
	- Weighting potentials and signals in (M)RPCs
	- Signals in the presence of a thin resistive layer
- **Conclusion**

Introduction

Outline:

- **Garfield++ MRPC simulation**
	- Grid-based avalanche method
	- Mixed method approach
- **Signal formation**
	- Ramo-Shockley theorem
	- Ramo-Shockley theorem extension for conductive media
	- Weighting potentials and signals in (M)RPCs
	- Signals in the presence of a thin resistive layer
- **Conclusion**

Introduction

The simulation approach for MRPCs relies heavily on a developed method that provide a one-dimensional description of avalanche dynamics using a grid-based approach.

5

The gas volume is subdivided into a 3D grid, with electrons snapped to the nodes and propagated along the drift direction. The avalanche development is modeled using swarm parameters and the **Legler model**.

To approximate space-charge suppression, growth is capped at 1.6*10⁷ electrons.

W. Legler, Z. Naturforschung. 16a (1961) 253. C. Lippmann, W. Riegler, NIM-A 517 (2004) 54–76. See [presentation](https://indico.cern.ch/event/1273825/contributions/5444158/) of Supratik Mukhopadhyay.

RD51–NOTE-2011-005, by Paulo Fonte. RD-51 Open Lectures by Filippo Resnati. See [presentation](Danko%20Bošnjaković) of D. Bošnjaković.

To accurately represent the early fluctuations' impact on the induced charge distribution, microscopic tracking in Garfield++ is used. After a set time (~ 50 - 100 electrons), the method switches to the grid model, forming a 'mixed method' approach.

Ramo-Shockley theorem

Ramo-Shockley theorem

The Ramo-Shockley theorem allows the current induced by an externally impressed charge density on any electrode to be calculated using a so-called weighting potential $\psi(x)$.

$$
I_i(t) = -\frac{q}{V_w} \mathbf{E}_i(\mathbf{x}_q(t)) \cdot \dot{\mathbf{x}}_q(t)
$$

$$
\mathbf{E}_i(\mathbf{x}) = -\nabla \Psi_i(\mathbf{x})
$$

This static $\psi(x)$ can be calculated for a grounded electrode using the following step:

- Remove the drifting charges
- Put the electrode at potential V_w
- Grounding all other electrodes

Signal in a non-resistive Micromegas

Let us consider a Townsend avalanche inside the amplification gap of a parallel plate-type detector that induces a signal on the anode plane.

Ramo-Shockley theorem extension for conducting media

Ramo-Shockley theorem extension for conducting media

In detectors with resistive elements, signal timing depends on both charge movement in the drift medium and the time-dependent reaction of resistive materials.

$$
I_i(t) = -\frac{q}{V_w} \int_0^t \mathbf{H}_i \left[\mathbf{x}_q(t') \, , t - t' \right] \cdot \dot{\mathbf{x}}_q(t') \, dt'
$$

$$
\mathbf{H}_i(\mathbf{x},t) \coloneqq -\nabla \frac{\partial \Psi_i(\mathbf{x},t) \Theta(t)}{\partial t}
$$

The dynamic weigting potential $\psi_i(x, t)$ can be calculated:

- Remove the drifting charges
- Put the electrode at potential Vw at time $t = 0$
- Grounding all other electrodes

Ramo-Shockley theorem extension for conducting media *conducting media nedia conducting media*

The time-dependent weighting potential is comprised of a static prompt and a dynamic delayed component:

$$
\psi_i(\mathbf{x}, t) \doteq \psi_i^p(\mathbf{x}) + \psi_i^d(\mathbf{x}, t)
$$
 where $\psi_i^d(\mathbf{x}, 0) = 0$

The current induced by a point charge q is given by:

Weighting potentials of (M)RPCs

Delayed component of the signal

A charge q moves at a constant velocity through the gas gap before reaching the bulk resistive layer that separates it from the anode.

$$
\tau:=\tfrac{\varepsilon_0}{\sigma}\tfrac{d+\varepsilon_r g}{g}
$$

W. Riegler, NIM-A 535 (2004) 287–293 Here we took $\epsilon_r = 1$.

Time t/T [1]

Delayed component of the signal

Given the typically high volume resistivities of $O(10⁹ - 10¹²)$ Ω ·cm in RPCs, the delayed component is negligible.

Time t/T [1]

W. Riegler, NIM-A 535 (2004) 287–293 Here we took $\epsilon_r = 1$.

Weighting potentials of (M)RPCs

The analytical expression for the prompt weighting potential of rectangular electrodes within an N-layer geometry has been implemented in the new 'ComponentParallelPlate' class in Garfield++.

$$
\psi^{w}\left(\tilde{x}', y_{m}\right) = \frac{2V_{w}}{\pi} \int_{0}^{\infty} \cos\left(k\left(\tilde{x} - \tilde{x}'\right)\right) \sin\left(\frac{k w_{x}}{2}\right) \frac{\varepsilon_{1}}{k^{2}} \left. \frac{\partial f_{m1}(k, y)}{\partial y}\right|_{(y=y_{0})} dk
$$

An example simulation of a 6-gap MRPC

Using the mixed-method approach, an event can be simulated in less then 0.3 s.

D. Stocco is extending this approach to the 2D model of C Lippmann. <https://indi.to/c9hfk>

Measurements taken from M. Shao et al., NIM-A 492 (2002) 344–350. Simulation performed for $iC_4H_{10}/SF_6/C_2H_2F_4$ (5/5/90%).

What about the resistive HV electrode?

 π

EP

R&D

The dynamic weighting potential was calculated using COMSOL and then applied in Garfield++ for induced signal calculations. For graphite layers with $O(100 \text{ k}\Omega/\text{m})$, the signal induced by electrons remains unaffected.

COMSOL Multiphysics: https://www.comsol.ch

Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459.

Garfield++ simulations of resistive particle detectors

Using the finite element method, dynamic weighting potentials can be numerically obtained for a wide range of resistive detectors.

An (incomplete) list of resistive detectors:

- Multi-gap Resistive Plate Chambers (MRPC)
- Surface Resistive Plate Counter (sRPC)
- MicroCAT's two-dimensional interpolating readout
- μ-Resistive WELL
- μ-Resistive plate WELL
- Small-pad resistive Micromegas
- Resistive-strip bulk Micromegas
- Resistive PICOSEC Micromegas
- Un-depleted-silicon Sensors
- Resistive Silicon Detectors (RSD)
- 4D Diamond Sensor

RPC MPGD Solid-state Resistive-strip bulk Micromegas

Garfield++ simulations of resistive particle detectors

Using the finite element method, dynamic weighting potentials can be numerically obtained for a wide range of resistive detectors.

An (incomplete) list of resistive detectors:

- Multi-gap Resistive Plate Chambers (MRPC)
- Surface Resistive Plate Counter (sRPC)
- MicroCAT's two-dimensional interpolating readout
- μ-Resistive WELL
- μ-Resistive plate WELL
- Small-pad resistive Micromegas
- Resistive-strip bulk Micromegas
- Resistive PICOSEC Micromegas
- Un-depleted-silicon Sensors
- Resistive Silicon Detectors (RSD)
- 4D Diamond Sensor

Conclusion

Using Garfield++, the MRPC response can be calculated from avalanche development to signal formation.

- For more efficient large-scale avalanche calculations, a mixed method is used: starting with microscopic electron tracking, followed by the Legler model.
- Garfield++ and COMSOL are used to model signal formation in detectors with resistive elements, applying an extended Ramo-Shockley theorem. A scan of different graphite layer surface resistivities showed results consistent with literature, confirming the prompt component's dominance.
- This approach applies to complex detector layouts in resistive gaseous detectors (RPCs, resistive MPGDs) and solid-state detectors.

Outlook:

- The grid-based method can be adapted for avalanche descriptions in SiPMs.
- A combined method will be implemented, using "super charges" that can be tracked microscopically.

Thank you for your attention!

