

DISCHARGES IN GASEOUS DETECTORS:

A VIEW FROM MPGD EXPERIENCE

Piotr Gasik (GSI/FAIR and TU Darmstadt) 12.09.2024

SHORT OVERVIEW

For a longer overview see two outstanding presentations at RD51 Collaboration meeting in Munich, 2018:

- V. Peskov*, " Discharge phenomena in gaseous detectors " ([link\)](https://indico.cern.ch/event/709670/contributions/3008581/)*

- P. Fonte, *"Simulations of discharge phenomena" ([link\)](https://indico.cern.ch/event/709670/contributions/3008591/)*

Why studying gas discharges in MPGDs?

- Gas discharge physics is one of the best-known fields of modern physics
- >200 years since the discovery of the arc discharge by V.V. Petrov
- Still, the main limiting factor for the stable operation of MPGDs
- Understanding gas discharges helps to avoid their occurrence and mitigate their effects!

Streamer theory

4

- A single *e* starting at the cathode builds up an avalanche (ionization) that crosses the gap
- Electrons in the avalanche move very fast compared to the ions (regarded as stationary)
- The space-charge E-field will cause significant distortions which
	- strengthen the electric field of the head and tail parts of the electron avalanche
	- weaken electric field between the positive and negative charge regions

- Raether criterion: Q_{max} = $e^{\alpha d}$ > 10⁸ is the condition for streamer formation and self-sustained discharge (as in Townsend)
- **Meek criterion:** radial E-field intensity of the space-charge (head of the avalanche) is ∼equal to the applied field; (Supplemented by Loeb condition on the electron density in the avalanche of 0.7 \times 10¹² cm⁻³ to ensure sufficient photoionisation)

Discharges in MPGDs

- Streamers can develop by the same mechanism as in PPAC \rightarrow no quenching by field reduction (i.e. full breakdown)
- Critical charge measurements in MPGDs point to a **limit of 10⁶ -10⁷***e*, depending on the reference
- Different geometries, gases, source (x-ray, alphas) → **is the limit the same if studied differentially?**

6

- Primary charge density is a more relevant parameter than the total number of electrons
- Source inclination studies higher charge densities per hole for perpendicular tracks impinging a GEM
- B∥E studies reduced transverse diffusion higher (surface) charge density

• Clear gas dependencies

7

- Discharge probability reduced for lighter gases \rightarrow charge density
- Clear correlation between discharge rate and $\langle Z \rangle$ of a gas mixture

- Simulations cannot describe Ne- and Ar- data using only W_i (effective ionization potential) weights
- Intrinsic properties of the working gas (transport, amplification, streamer development) could possibly explain the differences – more studies needed
- **Charge limits – different for different mixtures?**

65 K

MICROMEGAS

3 mm drift

 $Ar + 10\%$ Iso

He + 20% Iso

 $1.00E-4$

 $1.00F - 5$

 $1.00E - 6$

ಕಿಂದ
ಹಿಕ್ಕೆ
ಹಿಕ್ಕೆ 1.00E-7

 $1.00E - 8$

 $1.00F-9$

1000

GEMs and THGEMs

GEM discharge probability

PG et al., *[NIM A 870 \(2017\) 116](https://www.sciencedirect.com/science/article/pii/S0168900217307878)*

• Discharge probability of a single, standard GEM upon

irradiation with alpha particles:

- Lower breakdown limits in Argon than Neon-based mixtures
- Abrupt drop of discharge rate for source distances larger than alpha range
- Observations consistent with the primary charge density hypothesis
	- Alpha range in Ne longer than in Argon
	- *W*ⁱ (Ar) < *W*ⁱ (Ne)

Critical charge limits in GEMs

PG et al., *[NIM A 870 \(2017\) 116](https://www.sciencedirect.com/science/article/pii/S0168900217307878)*

- GEANT4 based model describes data fairly well over several orders of magnitude
- Only primary ionization and basic gas properties taken into account (*D_L, D_T, v_d)*
- No additional normalization!

- **Primary charge density** ➙ **driving factor for discharge formation**
- Different Q_{crit} for different gases \rightarrow no universal **Raether limit.**

Charge transport influence

- Preliminary $1E-3$ 1000 6.0 $[cm/\mu s]$ Discharge probability ● GEM: Ar-CO2 (90-10) ΔV _{GEM} = 425 V 5.0 800 Diffusion [µm $1E-4$ Drift velocity 4.0 **• Transverse diffusion** 600 **O** Longitudinal diffusion Drift velocity $1E-5$ 3.0 400 2.0 $1E-6$ 200 1.0 $1E-7$ 0.0 500 500 Ω 1000 1500 2000 Ω 1000 1500 2000 Drift field [V/cm] Drift field [V/cm] $1E-11$ $\frac{2}{6}$ $\frac{1400}{1200}$ Primary current [A] $1E-11$ 1000 8E-12 800 6E-12 600 $4E-12$ 400 $2E-12$ 200 • GEM: Ar-CO2 (90-10). ΔV _{GEM} = 400 V • GEM: Ar-CO2 (90-10), $\Delta V_{GEM} = 400$ V $1E-14$ Ω 1000 2000 3000 4000 500 1000 1500 2000 Ω Ω Drift field [V/cm] Drift field [V/cm]
- Clear influence of a field **above** the GEM on its stability

11

- Correlation with drift parameters: diffusion \rightarrow charge density \rightarrow discharge probability
- Increase for *E* < 400 V/cm not related to gain
- Drop for *E* > 400 V/cm not related to the collection efficiency

Charge transport influence

- Clear influence of a field **above** the GEM on its stability
- Correlation with drift parameters: diffusion \rightarrow charge density \rightarrow discharge probability
- Increase for *E* < 400 V/cm not related to gain
- Drop for *E* > 400 V/cm not related to the collection efficiency
- Scaling with v_{Drift}/D_T^2

THGEM Discharge probability

[NIM A 1047 \(2023\) 167730](https://www.sciencedirect.com/science/article/pii/S0168900222010221)

• Single THGEM (COMPASS-RICH)

- 〈*Z*〉 dependence
	- Ne more stable than $Ar \rightarrow charge$ density
- d_{source} dependence
	- Abrupt drop of the discharge rate for d_{source} > alpha range
- Quencher content dependence
	- Larger $CO₂$ content does not increase stability
- THGEMs less stable than GEMs
	- Primary electrons shared by lower number of holes in THGEMs

Simulation fits

• Simulated discharge curves are fitted to the data by means of χ^2 minimization for each gas and d_{source}

*Q***crit extracted individually for each distance and averaged using a weighted mean method**

- Gas dependency observed again!
- *Q*_{crit} for both structures agree with each other, in spite of geometrical differences!
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

Townsend maps

- *Q_{crit}* for both structures agree with each other, in spite of geometrical differences!
- Townsend coefficient maps for a GEM and a THGEM geometry (Comsol® electric field simulation convoluted with Townsend coefficients)
- The "effective volume" of a streamer creation in a THGEM may be comparable to the size of a GEM hole
- **Detailed simulations of streamer formation are necessary!** Also to understand gas dependency of Q_{crit}

MICROMEGAS

17

- Can Micromegas mesh cells be considered as individual amplification units, as GEM holes?
- If so \rightarrow discharge probability shall scale with the MMG mesh cell size, i.e. higher discharge rate for large-cell meshes (small LPI)
- Difficulty \rightarrow mesh parameters strongly influence E-field (high fields may further reduce the stability of the detector)
- Measurements with ⁵⁵Fe suggest using high-LPI meshes (Alviggi et al.)
- Field considerations with COMSOL[®] suggest low-LPI and thick meshes (Bhattacharya et al.)

M. Alviggi et al., NIM A 958 [\(2020\)162359](https://www.sciencedirect.com/science/article/pii/S0168900219309465)

D.S. Bhattacharya et al., [J. Phys. Conf. Ser. 1498 \(2020\) 012032](https://iopscience.iop.org/article/10.1088/1742-6596/1498/1/012032)

- Same dependency on the gas mixture as in previous measurements with GEMs and THGEMs
- For streamer and spark discharge development, more quencher does not mean more stability!
- Same order observed with other MMG types
- Primary charge density!

Discharge stability

- Electron transparency ∼98% for all MMG
- \cdot d_{source} shorter than alphas maximum range
- Discharge rate scales with the mesh cell size (optical transparency)
- The influence of high fields can be disregarded by measurements with low charge densities
- Mesh cell as an independent amplification structure
- High-rate & wide dynamic range operation
	- \rightarrow number of cells shall be increased
	- \rightarrow quencher plays a role in terms of charge densities
- Operation at high gains & lower charge densities
	- → field uniformity (peak fields, woven/calendered mesh, etc)
	- \rightarrow better quenchers needed (open geometry) to reduce photon feedback

What about water?

No -resistive layers!

20

*Scaled gain – transparency < 100%

SECONDARY DISCHARGES

Secondary discharge formation*

Discharge in the transfer/induction gap appearing *O*(1-10) μs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
	- − A. Deisting, et al. NIM A 937 (2019) 168
	- − A. Utrobicic, et al. NIM A 940 (2019) 262
- Mitigation strategies established quenching with external *R* elements, *C* reduction
	- − L. Lautner, PG, et al. JINST 14 (2019) P08024
	- − A. Deisting, C. Garabatos, PG, et al. NIM A 937 (2019) 168

a) Primary discharge

* See pioneering studies by *S. Bachmann et al. NIM A479 (2002) 294 & V.* Peskov, P.Fonte (2009) arXiv:0911.0463

Discharge spectroscopy

B. Ulukutlu et al., *NIM A 1019 (2021) 165829 + update*

- Measuring emission spectra of the light emitted during primary discharges
- Cu and Al emission lines observed in GEM discharges
- vaporisation \rightarrow presence of foil material in discharge plasma
- THGEMs with various electrodes \rightarrow no emission lines corresponding to foil cladding
- No or strongly reduced material vaporisation from discharges in THGEM hole geometry \rightarrow lower temperature reached?
- Secondary discharges still prevalent in THGEMs
- No direct connection between material vaporisation and secondary discharge formation
- Influence of the cathode material properties or surface quality

(Mo, polished Cu exceptionally stable)

Secondary discharge formation - hypothesis

- Transition between Townsend discharge and Streamer discharge?
	- Dependence on gas (α process) and cathode? (γ process feeding)
	- Time lag *O*(10 μs) with a rapid full gap breakdown

- Townsend mechanism initiated by electrons from a primary discharge;
- Secondary emission from the heated cathode;
- Space charge accumulation at the anode;
- Transition to a streamer.

Choice of gas for spark dischagre mitigation – lower N_{prim}

- Light noble gases are preferable
- Quencher content optimize primary charge density and electron transport properties.
- Open geometries (e.g. Micromegas): UV photons feedback at high gains may lead to a Townsend discharge
	- \rightarrow well-quenched gases preferable but watch out charge densities!
- Reduce gain as much as allowed by the signal-to-noise ratio requirements
	- \rightarrow trivial but most efficient method to minimize the discharge probability,

27

Build stacks – diffuse primary charge

- **GEMs are easy to stack**
	- Pre-amplification stage lower gain of single structures
	- Charge spread between independent holes $-Q_{\text{crit}}$ per hole stays the same!
	- Small pitches preferable (watch out quality!)
- **GEM + MMG hybrids and multi-MMG stacks**

NIM A 834 (2016) 149 and NIM A 976 (2020) 164282, NIM A 623 (2010) 94

- Clear influence of the pre-amplification stage on the stability of MMG
- Lower charge densities reach (subsequent) MMG stages
- Mesh cell as an independent amplification structure (see also JINST 18 (2023) C06011)
- **Optimized HV settings** (lower amplification towards bottom of a stack)
	- Violated in case the stack optimized for low ion backflow (TPCs)
	- Adding further foils in the stack can improve its stability, ➙ 4GEM Readout for ALICE TPC (IBF optimized)
	- Optimize the electric field above/below the MPGD (diffusion, focusing, extraction/collection)

ALICE TPC Upgrade TDR Addendum, CERN-LHCC-2015-002

Resistive MPGDs

- Allow for charge sharing and create self-quenching mechanism
- Delay the charge evacuation and force local field reduction \rightarrow rate capabilities

Resistive MICROMEGAS *(NIM A 629 (2011) 66, NIM A 1025 (2022) 166109)*

- Reduces the charge released by MMG during spark formation.
- Provides spark protection to electronics
- Standard solution for many MMG-based detectors Time (s) (e.g. ATLAS NSW: Mod. Phys. Lett. A28 (2013) 1340020, NIM A 640 (2011) 110, T2K TPC Upgrade NIM A 957 (2020) 163286, …)

Resistive WELL and Resistive Plate WELL *(JINST 7 (2012) C05011, JINST 8 (2013) P11004)*

- Resistivity: 16 M Ω/\Box (RWELL), 2·10¹⁰ Ω cm (RPWELL)
- Stable operation at gains of up to a few 10⁴ (with gain drop corrections!)

Embedded resistors *(JINST 12 (2009) P12004, NIM A 824 (2016) 510)*

- Control of the resistance through R-pattern
- Tuned for minimal charge-up & spark suppression

2.5

66000

Current (µA)

r s r

New structures: micro-RWELL

G. Bencivenni et al., JINST 10 (2015) P02008

- Single-sided Gaseous Electron Multiplier (GEM) coupled to the readout anode through the material of high surface resistivity
- Single amplification stage \rightarrow material budget, simplicity, industrialization, costs!
- Resistive layer \rightarrow suppression of the transition from streamer to spark, with a consequent reduction of the spark amplitude.

- High-rate capabilities restored by the proper grounding of the DLC layers (grooves, dots) \rightarrow improved charge evacuation
- DLC grounding by **conductive DOT** \rightarrow **rate capability** (@ 90% drop) > 10 MHz/cm²

Further reduction of instabilities

- High fields around defects and residual contamination may lead to instabilities (self-sustained discharges)
- **Quality control of the upmost importance**

(for MPGDs see ALICE JINST 16 (2021) P03022, CMS NIM A 1034 (2022) 166716, ATLAS NIM A 1026 (2022) 166143)

• **Careful design**

22 30

- Reduce charge density per single amplification cell (e.g., small pitch GEM, large LPI MMG)
- $-$ Segmentation \rightarrow reduce the energy of a discharge
- $-$ Avoid high fields \rightarrow electrode edge effects (e.g. edge hole rows, sharp edges/corners, ...) influence of mechanical structures (e.g. spacers in MPGD stacks, multi-gap RPCs, …)
- **HV system and HV scheme optimisation**
	- Safe system (passive dividers, active dividers, cascaded PS)
	- Reduce currents, quench secondary (propagated) discharge development
	- Reduce and decouple parasitic capacitances parallel to MPGDs and transfer gaps in the MPGD stacks

D.S. Bhattacharya, RD51 Meeting, Sep. 2018 ([link\)](https://indico.cern.ch/event/756297/contributions/3143807/)

© S. Dalla Torre, F. Tessarotto (INFN)

L. Lautner et al. JINST 14 (2019) P08024

- Discharge probability could be reduced if a radial shape E-field is formed in the MPGD avalanche gap
- Both simulation and R&D effort. Still need for optimization, but ideas on the market!

Discharge Consortium in quest for Spark-Less-Avalanche-Microstructures

RD51 Common Project, V. Peskov, PG (2020-2023), see also T. Waldmann *et al*. *JINST* **18** (2023) C07009 for the Wire-SLAM Version

- **Gas discharge mechanisms in MPGDs well-known**
- Fundamental gas limits for streamer/spark formation: Q_{crit}
- Avoid streamer development by lowering primary charge, charge sharing, avalanche quenching methods, and shaping of the electric field.
- Instabilities caused by defects/ageing/contamination can be avoided by good design practices and quality assurance/control methods
- **To do: more modelling work on discharge development, e.g.:**
	- Simulation of an avalanche process and its transition to a streamer (Garfield++)
	- Understand discharge probability and *Q*crit values obtained with different geometries
	- Simulation model describing secondary (propagated, delayed) discharges developing in the gaps between subsequent foils in a stack.