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1. Introduction

THE High Voltage (HV) scan is a critical calibration pro-
cedure performed at the start of each data-taking year

at the CERN LHC. This scan is essential for ensuring the
proper functioning of RPC detectors in the CMS experi-
ment by establishing their correct working points. Because
some part of the analysis is performed manually, an ML-
based tool has been developed to speed up the process of
analysing RPC HV scan data. This tool utilizes an artificial
neural network (ANN) trained to discard outliers and accu-
rately approximate efficiency behavior, even when data is
missing within the range where efficiency typically stabilizes
(efficiency plateau).

2. RPC HV scan data analysis

Efficiency is measured for every HV point and the resulting
distributions are fitted using a sigmoid function defined as:

ϵ =
ϵmax

1 + e−slope50%(HV−HV50%)
(1)

where slope50% characterize the slope of the sigmoid, ϵmax

represents the plateau of the distribution, and HV50% is the
value of the voltage at 50% of the maximum efficiency [1].
The working points per roll (WProll) for the RPCs in the
barrel and endcap regions are defined as HV95% + 100 V
and HV95% + 120 V, respectively. A total 480 and 293 HV
channels in barrel and endcap regions, respectively, supply
between 2 barrel and 6 endcap rolls. The working point per
channel is defined by the following [1]:

WPCH =


⟨WProll⟩ if WPMax

roll −WPMin
roll ≤ 100 V

WPMin
roll if WPMax

roll −WPMin
roll > 100 V

(2)

3. Fourier Space Autoencoder (FSAC)

A dedicated autoencoder ANN has been developed to op-
erate in Fourier space, approximating efficiency versus HV
curves for each double gap.

Figure 1: Diagram of Fourier Space Autoencoder. The
model consists of an input layer, a DCFT layer, an autoen-
coder, an output layer in the reciprocal space domain, and
a subsequent layer that transforms the data back to the HV
domain via inverse DCFT. The insets illustrate examples of
inputs and outputs, showcasing the transformation between
the HV and reciprocal space domains.

4. Training and validation

A synthetic dataset, derived from a sigmoidal function, was
used for training and validation purposes, with 80% of the
data designated for training and 20% for validation. The
machine learning model was trained and validated, yielding
a 3% error rate during testing.

Figure 2: Examples of model training input with outliers
and the corresponding output. In the HV domain plots,
the red line represents the original function from which the
data was generated. In the reciprocal space domain plots,
the red line shows the Cosine Fourier Transform (CFT) of
the function, illustrating how the original function is broken
down into its real (cosine) frequency components. On the
top row the green dots correspond to the generated data
points and their respective CFT. The bottom row showcases
the model’s output in both the HV and reciprocal space do-
mains.

5. Performance on data

The model has been tested on RPC HV scan data from
2024, where it uses measured efficiency values across dif-
ferent supply voltages to estimate detector efficiency within
the range of 8.0 to 10.5 kV. It generates 26 hv-efficiency
points, which we fit by sigmoidial function (eq.(1)) to obtain
the fitting parameters.

Figure 3: Efficiency and cluster size curves after apply-
ing FSAC for case of good efficiency curve. The chamber
is W+2 RB2in S01 Backward. The data point at 8.8 kV is
excluded from the cluster size plot because the absolute dif-
ference between the predicted and actual efficiency values
at that voltage exceeded the associated error.

Figure 4: Efficiency and cluster size curves after apply-
ing FSAC for case where the last point has zero efficiency.
The chamber is RE-1 R2 CH02 A. The data points at 9.5
kV and 9.8 kV were excluded from the cluster size plot be-
cause the absolute difference between the predicted and
actual efficiency values at these voltages exceeded the as-
sociated errors.

Figure 5: Efficiency and cluster size curves after applying
FSAC for case where there are outliers present in the effi-
ciency plot. The chamber is W-2 RB4+ S06 Backward. The
data points at 8.6 kV, 8.8 kV, 9 kV and 9.3 kV were excluded
from the cluster size plot because the absolute difference
between the predicted and actual efficiency values at these
voltages exceeded the associated errors.

Figure 6: Efficiency and cluster size curves after applying
FSAC for case where the plateau is missing in efficiency
curve. The chamber is RE-3 R2 CH19 A. .

Figure 7: Efficiency and cluster size curves after apply-
ing FSAC for case where there are outliers and missing
plateau present in the efficiency plot. The chamber is W+2
RB4 S03 Backward. The data points at 8.8 kV, 9 kV and 9.4
kV were excluded from the cluster size plot because the
absolute difference between the predicted and actual effi-
ciency values at these voltages exceeded the associated
errors.

Data are taken with pp-collisions, and effiency and cluster
size are evaluated using Segment Extrapolation Method.
The model accurately estimates the parameters for defin-
ing new working points for each roll and chamber, effec-
tively handling problematic data by automatically detecting
and discarding outliers, eliminating the need for manual in-
tervention and refitting.

6. Conclusion

The proposed machine learning algorithm can greatly
speed up the analysis of calibration data from the CMS
RPC HV scan. What used to take over three months can
now be done in less than a week, making the process much
more efficient.
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