EDM4hep.jlPrototype

https://github.com/peremato/EDM4hep.jl

Pere Mato/CERN 19 December 2023

Motivation

- * Generate Julia 'friendly' structures for the EDM4hep data model * Be able to read event data files (in ROOT) written by C++ programs from Julia (using the UnROOT.jl package)
- * Later, be able also to write RNTuple files from Julia

Julia language in Simulation and Reconstruction workflows

Implementing EDM4hep in Julia is a pre-requisite for introducing the

Main Design Features

- * All entities are **immutable structs** for better performance, SoA, GPUs, etc.
 - * POD with basic types and structs, including the relationships (one-to-one and one-to-many)
 - * Objects attributes cannot be changed, new instances must be created (Accessors.jl)
- * Constructors have keyword arguments with reasonable default values
- * New objects are by default not registered, they are "free floating". Explicit registration or setting relationships will register them to containers.
- pattern is to overwrite the user variable with the new instance, e.g.:

```
p1 = MCParticle(...)
p1 = register(p1)
p1, d1 = add_daugther(p1, MCParticle(...))
```

* Reading EDM4hep containers from ROOT should result in StructArrays

* Very efficient access by column and the same time provide convenient views as object instances

* Note that operations like **register**, **setting relationships** will automatically create a new instances. The typical

PODIO Generation

- * Written small Julia script to generate Julia structs from YAML file
 - * Added a ObjectID to each object to control its registration state
 - Relations implemented with ObjectID and Relations structs with just indices (isbits())
- Two files: genComponents.jl, genDatatypes.jl generated that can be complemented with useful methods

```
.....
struct MCParticle
   Description: The Monte Carlo particle – based on the lcio::MCParticle.
   Author: F.Gaede, DESY
.....
struct MCParticle <: POD</pre>
    index::ObjectID{MCParticle}
                                     # ObjectID of himself
   #---Data Members
                                     # PDG code of the particle
    PDG::Int32
                                     # status of the particle as defined by the ...
   generatorStatus::Int32
                                     # status of the particle from the simulation ...
    simulatorStatus::Int32
    charge::Float32
                                     # particle charge
                                     # creation time of the particle in [ns] wrt. ...
    time::Float32
                                     # mass of the particle in [GeV]
   mass::Float64
                                      # production vertex of the particle in [mm].
   vertex::Vector3d
                                      # endpoint of the particle in [mm]
    endpoint::Vector3d
                                     # particle 3-momentum at the production vertex..
    momentum::Vector3f
                                     # particle 3-momentum at the endpoint in [GeV]
   momentumAtEndpoint::Vector3f
    spin::Vector3f
                                     # spin (helicity) vector of the particle.
                                     # color flow as defined by the generator
    colorFlow::Vector2i
   #---OneToManyRelations
    parents::Relation{MCParticle,1} # The parents of this particle.
    daughters::Relation{MCParticle,2} # The daughters this particle.
end
.....
struct SimTrackerHit
   Description: Simulated tracker hit
   Author: F.Gaede, DESY
.....
struct SimTrackerHit <: POD</pre>
    index::ObjectID{SimTrackerHit}
                                     # ObjectID of himself
   #---Data Members
                                     # ID of the sensor that created this hit
    cellID::UInt64
                                     # energy deposited in the hit [GeV].
    EDep::Float32
                                      # proper time of the hit in the lab frame in ...
    time::Float32
                                      # path length of the particle in the sensiti ...
    pathLength::Float32
                                      # quality bit flag.
    quality::Int32
                                     # the hit position in [mm].
    position::Vector3d
   momentum::Vector3f
                                     # the 3-momentum of the particle at the hits ...
   #---OneToOneRelations
```

mcparticle_idx::ObjectID{MCParticle} # MCParticle that caused the hit.

```
end
```


Building Model in Memory

```
#---MCParticles-----
p1 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, 7000.0), generatorStatus=3)
p2 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, -7000.0), generatorStatus=3)
p3 = MCParticle(PDG=1, mass=0.0, momentum=(0.750, -1.569, 32.191), generatorStatus=3)
p3, p1 = add_parent(p3, p1)
p4 = MCParticle(PDG=-2, mass=0.0, momentum=(-3.047, -19.000, -54.629), generatorStatus=3)
p4, p2 = add_parent(p4, p2)
p5 = MCParticle(PDG=-24, mass=80.799, momentum=(1.517, -20.68, -20.605), generatorStatus=3)
p5, p1 = add_parent(p5, p1)
p5, p2 = add_parent(p5, p2)
p6 = MCParticle(PDG=22, mass=0.0, momentum=(-3.813, 0.113, -1.833), generatorStatus=1)
p6, p1 = add_parent(p6, p1)
p6, p2 = add_parent(p6, p2)
p7 = MCParticle(PDG=1, mass=0.0, momentum=(-2.445, 28.816, 6.082), generatorStatus=1)
p7, p5 = add_parent(p7, p5)
p8 = MCParticle(PDG=-2, mass=0.0, momentum=(3.962, -49.498, -26.687), generatorStatus=1)
p8, p5 = add_parent(p8, p5)
#---Simulation tracking hits-----
for j in 1:5
  sth1 = register(sth1)
  sth2 = register(sth2)
end
```

sth1 = SimTrackerHit(cellID=0xabadcaffee, EDep=j*0.000001, position=(j * 10., j * 20., j * 5.), mcparticle=p7) sth2 = SimTrackerHit(cellID=0xcaffeebabe, EDep=j*0.001, position=(-j * 10., -j * 20., -j * 5.), mcparticle=p8)

Navigating Relationships

C	
tor	p in getEDStore(MCParticle).objects
	<pre>println("MCParticle \$(p.index) with PDG=\$(p.PDG) and</pre>
	for d in p.daughters
	<pre>println("> \$(d.index) with PDG=\$(d.PDG) and</pre>
	end
end	
for	s in <pre>getEDStore(SimTrackerHit).objects</pre>
	<pre>println("SimTrackerHit in cellID=\$(string(s.cellID, b</pre>
	<pre>associated to particle \$(s.mcparticle.index)</pre>
end	MCParticle #1 with PDG=1 a
	MCParticle #2 with PDG=22
	> #1 with PDG=1 and

	#Z WITH FDG-ZZI
> #1	with PDG=1 and
> #5	with PDG=-24 an
> #6	with PDG=22 and
MCParticle	#3 with PDG=-2
MCParticle	#4 with PDG=221
> #3	with PDG=-2 and
> #5	with PDG=-24 an
> #6	with PDG=22 and
MCParticle	#5 with PDG=-24
> #7	with PDG=1 and
> #8	with PDG=-2 and
MCParticle	#6 with PDG=22
MCParticle	#7 with PDG=1 a
MCParticle	#8 with PDG=-2
SimTracker	Hit in cellID=ab
SimTracker	Hit in cellID=ca
SimTracker	Hit in cellID=ab
SimTracker	lit in cellID=ca
SimTracker	Hit in cellID=ab
SimTracker	lit in cellID=ca
SimTracker	Hit in cellID=ab
SimTracker	Hit in cellID=ca
lSimTrackerl	Hit in cellID=ab

momentum \$(p.momentum) has \$(length(p.daughters)) daughters")

```
d momentum $(d.momentum)")
```

pase=16)) with EDep=\$(s.EDep) and position=\$(s.position))")

```
and momentum (0.75, -1.569, 32.191) has 0 daughters
                         12 and momentum (0.0,0.0,7000.0) has 3 daughters
                          momentum (0.75, -1.569, 32.191)
                          nd momentum (1.517,-20.68,-20.605)
                          d momentum (-3.813,0.113,-1.833)
                          and momentum (-3.047,-19.0,-54.629) has 0 daughters
                          L2 and momentum (0.0,0.0,-7000.0) has 3 daughters
                          d momentum (-3.047,-19.0,-54.629)
                          nd momentum (1.517,-20.68,-20.605)
                          d momentum (-3.813,0.113,-1.833)
                          and momentum (1.517,-20.68,-20.605) has 2 daughters
                          momentum (-2.445,28.816,6.082)
                          d momentum (3.962,-49.498,-26.687)
                          and momentum (-3.813,0.113,-1.833) has 0 daughters
                          and momentum (-2.445,28.816,6.082) has 0 daughters
                          and momentum (3.962,-49.498,-26.687) has 0 daughters
                          badcaffee with EDep=1.0e-6 and position=(10.0,20.0,5.0) associated to particle #7
                          affeebabe with EDep=0.001 and position=(-10.0,-20.0,-5.0) associated to particle #8
                          badcaffee with EDep=2.0e-6 and position=(20.0,40.0,10.0) associated to particle #7
                          affeebabe with EDep=0.002 and position=(-20.0,-40.0,-10.0) associated to particle #8
                         badcaffee with EDep=3.0e-6 and position=(30.0,60.0,15.0) associated to particle #7
                         affeebabe with EDep=0.003 and position=(-30.0,-60.0,-15.0) associated to particle #8
                          badcaffee with EDep=4.0e-6 and position=(40.0,80.0,20.0) associated to particle #7
                         affeebabe with EDep=0.004 and position=(-40.0,-80.0,-20.0) associated to particle #8
                         badcaffee with EDep=5.0e-6 and position=(50.0,100.0,25.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.005 and position=(-50.0,-100.0,-25.0) associated to particle #8
```


Integrated in the Julia ecosystem

- the Julia ecosystem. Examples:

 - * GPU array programming

using DataFrames df = DataFrame(getEDStore(MCParticle).objects)

8×15 Row	DataFrame index ObjectID…	PDG Int32	generatorStatus Int32	simulatorStatus Int32	charge Float32	time Float32	mass Float64	vertex Vector3d	endpoint Vector3d	momentum Vector3f	momentumAtEndpoint Vector3f	spin Vector3f	colorFlow Vector2i	parents Relation…	daughters Relation…
1	#1	1	3	0	0.0	0.0	0.0	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0.75,-1.569,32.191)	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0,0)	MCParticle#[2]	MCParticle#[]
2	#2	2212	3	0	0.0	0.0	0.938	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(0.0,0.0,7000.0)	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(0,0)	MCParticle#[]	MCParticle#[1
3	#3	-2	3	0	0.0	0.0	0.0	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(-3.047,-19.0,-54.629)	(0.0,0.0,0.0)	(0.0, 0.0, 0.0)	(0, 0)	MCParticle#[4]	<pre>MCParticle#[]</pre>
4	#4	2212	3	0	0.0	0.0	0.938	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(0.0,0.0,-7000.0)	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0, 0)	MCParticle#[]	MCParticle#[3
5	#5	-24	3	0	0.0	0.0	80.799	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(1.517,-20.68,-20.605)	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0,0)	<pre>MCParticle#[2, 4]</pre>	MCParticle#[7
6	#6	22	1	0	0.0	0.0	0.0	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(-3.813,0.113,-1.833)	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0, 0)	MCParticle#[2, 4]	MCParticle#[]
7	#7	1	1	0	0.0	0.0	0.0	(0.0, 0.0, 0.0)	(0.0, 0.0, 0.0)	(-2.445,28.816,6.082)	(0.0,0.0,0.0)	(0.0, 0.0, 0.0)	(0, 0)	MCParticle#[5]	MCParticle#[]
8	#8	-2	1	0	0.0	0.0	0.0	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(3.962,-49.498,-26.687)	(0.0,0.0,0.0)	(0.0,0.0,0.0)	(0,0)	MCParticle#[5]	MCParticle#[] 1 column

* Simple structs (isbits) and vectors of them integrate well with the rest of

* A container of EDM4hep datatypes can be converted to a **DataFrame** immediately

Reading from a ROOT

```
using EDM4hep
using EDM4hep.RootIO
cd(@__DIR__)
f = "ttbar_edm4hep_digi.root"
reader = RootIO.Reader(f)
events = RootIO.get(reader, "events")
evt = events[1];
hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollect
mcps = RootIO.get(reader, evt, "MCParticle")
for hit in hits
end
#---Loop over events-----
for (n,e) in enumerate(events)
    ps = RootIO.get(reader, e, "MCParticle")
    println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")
end
```

	ree) File
	Hit #1 is related to MCParticle #65 with name pi+
	Hit #2 is related to MCParticle #65 with name pi+
	Hit #3 is related to MCParticle #65 with name pi+
	Hit #4 is related to MCParticle #65 with name pi+
	Hit #5 is related to MCParticle #66 with name pi-
	Hit #6 is related to MCParticle #66 with name pi-
	Hit #7 is related to MCParticle #66 with name pi-
	Hit #8 is related to MCParticle #49 with name pi+
	Hit #9 is related to MCParticle #49 with name pi+
	Hit #10 is related to MCParticle #49 with name pi+
	Hit #11 is related to MCParticle #27 with name K-
	Hit #12 is related to MCParticle #27 with name K-
	Hit #13 is related to MCParticle #27 with name K-
ion")	Hit #14 is related to MCParticle #95 with name e-
,	Hit #15 is related to MCParticle #95 with name e-

println("Hit \$(hit.index) is related to MCParticle \$(hit.mcparticle.index) with name \$(hit.mcparticle.name)")

~ 1500 times faster than Python

A real StructureOfArrays (SoA)

- Storage in memory consists of a set of column arrays
 - very fast access by column
- Materialize, when requested, object instances (usually on the stack) to be able to call object methods
 - * to achieve a user friendly access

```
julia> typeof(mcps[1])
MCParticle
julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}
julia> length(mcps.charge)
211
julia> mcps[1:2].momentum
2-element StructArray(::Vector{Float32}, ::Vector{Float32},
::Vector{Float32}) with eltype Vector3f:
(0.5000167,0.0,50.0)
(0.5000167,0.0,-50.0)
julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)
```


What's Next?

- * Need to generate and support VectorMembers
 - * Implementation similar to One-to-Many relations. For the time being are ignored
- * Handle cyclic datatype dependencies
 - * One case that is not yet resolved. `Vertex` <--> `ReconstructedParticle`. Use the abstract class in this case
- * Better handle collectionID in one-to-many relations
- * Be able to read RNTuple files in addition to TTree files
- * Easy schema evolution profiting from the fact that ROOT files are self-described and Julia types can be introspected

