$\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Supplemental slides

QCD in photon production:

fragmentation, isolation, resummation, slicing

Thomas Becher University of Bern

Frontiers in precision phenomenology CERN, August 21, 2024

Fixed-Order Pathologies

For all cross section computations we will use

$$\begin{split} E_T^{\gamma} > E_T^{\min} &= 125 \, \text{GeV} & |\eta_{\gamma}| < 2.37 \\ \alpha_s(M_Z) &= 0.119 & \alpha_{\text{EM}} = 1/132.507 \\ \sqrt{s} &= 13 \, \text{TeV} & \text{NNPDF23_nlo_as_0119_qed_mc} \end{split}$$

and for fixed-order results we set

$$\mu_f = \mu_r = 125 \,\mathrm{GeV}$$

Fixed-cone results involve fragmentation functions and associated scale. For fixed-order, we set

$$\mu_a = 125 \,\mathrm{GeV}$$

Fixed-Order Pathologies (I)

 σ (isolated) with smooth-cone, $n = 1, \varepsilon_{\gamma} = 1$

σ(inclusive) with Gehrmann deRidder, Glover '98fragmentation functions

- **Should** have: σ (isolated) < σ (inclusive)
- At NLO, the isolation dependent part of cross section is proportional to ln(*R*)
 - breakdown of FOPT for $R \leq 0.2!$
 - R = 0.2 is default value for ATLAS diphoton analyses

Same problem also for fixed-cone isolation Catani, Fontannaz, Guillet and Pilon in JHEP 05, 028 (2002)

Isolation radius	Total
R	NLO
1.0	3765.1
0.7	4098.0
0.4	4524.5
0.1	5431.1
Without isolation	5217.9

Fixed-cone isolation, $\varepsilon_v = 0.133$

Also σ (isolated) depends fragmentation functions.

Tevatron cross section

$$\frac{d\sigma}{dE_{\gamma}^{T}} \left[\text{pb/GeV} \right]$$

with $E_{\gamma}^T = 15 \,\mathrm{GeV}$

Fixed-Order Pathologies (II)

 σ (isolated) with fixed-cone isolation.

BFG (Bourhis, Fontannaz and Guillet, '98) fragmentation functions

- σ (isolated) should monotonically decrease as ε_{γ} is lowered
- NLO isolation effects are linear in ε_{γ} for small ε_{γ} (soft quark...)
 - coefficient enhanced by ln(R), unphysical for small R
- ATLAS isolation corresponds to $\varepsilon_{\gamma} = 0.04$ for $E_T^{\gamma} = 125 \, \text{GeV}$

Isolation parameter dependence

Isolation parameter dependence

Interesting to look at difference to reference cross section

$$\Delta \sigma = \sigma \left(\epsilon_{\gamma}, n, R \right) - \sigma \left(\epsilon_{\gamma}^{\text{ref}}, n^{\text{ref}}, R^{\text{ref}} \right)$$

since direct part drops out:

$$\Delta \sigma = \sum_{i=q,\bar{q}} \int_{E_T^{\min}}^{\infty} dE_i \int_{z_{\min}}^1 dz \frac{d\sigma_{i+X}}{dE_i} \Delta \mathcal{F}_{i\to\gamma}$$

R-dependence (smooth cone)

- Good agreement between full NLO (lines) and fragmentation approach (dots)
 - difference must vanish for $R \rightarrow 0$
- Right plot without *R*-suppressed contribution of gluons inside the cone

ε_{γ} -dependence (smooth cone)

• Fragmentation approach becomes exact as $R \rightarrow 0$.

Smooth- vs fixed-cone isolation

- For fixed cone also inside part of $\mathcal{F}_{i\to\gamma}$ has $\ln(R)$ contribution, which is ε_{γ} dependent.
 - For $\varepsilon_{\gamma} \rightarrow 0$ inside part vanishes and one recovers smooth-cone *R*-dep!

More generally: for small $\varepsilon_{\rm V}$ the inside part becomes small

• Non-perturbative fragmentation suppressed by $\varepsilon_{\rm Y}$

and at NLO the following properties hold

- In(R) dependence only from outside part
- All isolation prescriptions become identical!

but at NNLO differences from out-in terms!

Resummation

- Resum both $ln(\epsilon_{\gamma})$ and ln(R).
- Lowest scale is $R E_0 \ge 1$ GeV for ATLAS !

Resummation of $\ln(R)$ and $\ln(\varepsilon_{\gamma})$

• For the full cross section, add direct part $\sigma^{\rm dir} \approx 290\,{\rm pb}$

Resummation of $\ln(R)$ and $\ln(\varepsilon_{\gamma})$

• For the full cross section, add direct part $\sigma^{\rm dir} \approx 290\,{\rm pb}$