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FO vs Singular vs Nonsingular
‣ Different frame definitions of one-jettiness have different size of power corrections
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FIG. 1: Absolute values of the ⌧1 = T1/mT spectra with T0 > 50 GeV for fixed-order, singular and nonsingular
contributions at O(↵2

s
) (left) and at pure O(↵3

s
) (right) on a logarithmic scale (upper frames) and signed values for

the nonsingular on a linear scale (lower frames). Results for both the laboratory frame (LAB) and the frame where
the colour-singlet system has zero rapidity (CS) are shown. Statistical errors from Monte Carlo integration, shown

as thin vertical error bars, become sizeable at extremely low ⌧1 values.

the dimensionless ⌧1 = T1/mT variable, which is the ar-
gument of the logarithms appearing in the cross section
for our choice of µH = mT . In the lower panel of the
same figure we compare the nonsingular contributions in
the LAB and CS frames on a linear scale. At both or-
ders one can see how the singular spectrum reproduces
the fixed-order result at small values of ⌧1 and how the
nonsingular spectrum has the expected suppressed be-
haviour in the ⌧1 ! 0 limit. As anticipated, the nonsin-
gular contribution in the CS frame is consistently smaller
than that evaluated in the laboratory frame. Due to the
smaller power corrections in the nonsingular contribu-
tion, from now on we only focus on and present results in
the colour-singlet frame (though the formalism adopted
is able to deal with any frame definition related by a lon-
gitudinal boost). Similar results for qT cuts are reported
in sec. IIID.

In the left panel of Fig. 2 (Fig. 3) we show our re-
summed predictions in the peak region of the T1 spectrum
in the CS frame, with a cut T0 > 50 GeV (qT > 100 GeV).
We observe good perturbative convergence between dif-
ferent orders. Starting from NNLL0, the inclusion of
NNLO boundary conditions together with NLO⇥NLO
mixed-terms in the factorisation formula results in a large

impact on the central values and in a sizeable decrease
of the theoretical uncertainty bands. We also notice that
the di↵erences between the N3LL and the NNLL0 predic-
tions are minor, suggesting that, unlike at lower-orders,
the N3LL evolution does not change considerably the
NNLL0 results.

In the right panel of Fig. 2 we present our final results
after additive matching to the fixed-order predictions. In
order to better highlight the e↵ects in the resummation
region (T1 . 30 GeV), the plot is shown on a linear T1

scale up to 30 GeV and a logarithmic scale above. In
this case, the addition of the nonsingular contributions
substantially modifies the resummed predictions, both in
the fixed-order (T1 & 30 GeV) but also in the resumma-
tion region. This can be better appreciated by looking at
Fig. 4, which compares the values of the resummed and
nonsingular predictions at NNLL+LO2 (left panel) and
at N3LL+NLO2 (right panel). The relative size of each
contribution to the corresponding matched predictions
is shown in the lower inset. We note that this poor
convergence is also present when cutting on the vector
boson transverse momentum qT > 100 GeV in the right
panel of Fig. 3 and the di↵erence between orders grows
larger when the cut is reduced (see sec. IIID).

τ1 = 𝒯1/ M2
l+l− + q2

T

10

is correctly described by fixed-order predictions. In ad-
dition, T1 is subject to the constraint T1/T0  1� 1/N ,
with N=2 (N=3) at NLO (NNLO). Therefore, in order
to achieve a proper description throughout the T1 spec-
trum while satisfying the T1/T0 constraint, we construct
two-dimensional (2D) profile scales that modulate the
transition to the FO region as a function of both T1/µFO

and T1/T0, with µFO the fixed-order scale. These profile
scales correctly implement the phase space constraint in
T1/T0, reducing to T1-dependent profile scales when it is
satisfied and asymptoting to µFO when it is violated. A
detailed discussion of our 2D profile scale construction is
given in sec. III B.

A reliable theoretical prediction must include a thor-
ough uncertainty estimate by exploring the entire space
of possible scale variations. In our analysis, we achieve
this by means of T1 profile scale variations, see e.g.
ref. [26]. Specifically, our final uncertainty is obtained
by separately estimating the uncertainties related to re-
summation and the FO perturbative expansion. Since
these are considered to be uncorrelated, we sum them in
quadrature.

In order to achieve a valid description also in the tail
region of the one-jettiness distribution, this resummed
result is matched to the NLO predictions for �⇤

/Z+2 jets
production (NLO2), using a standard additive matching
prescription

d�N
3
LL+NLO2

d�1dT1
=
d�N

3
LL

d�1dT1
+

d�Nons.

d�1dT1
, (59)

d�Nons.

d�1dT1
=

0

@d�NLO2

d�1dT1
�

d�N
3
LL

d�1dT1

�����
O(↵2

s
)

1

A ✓(T1) ,

where the last term of the second equation above is the
NNLO singular contribution. Similar formulae readily
apply at lower orders. The NLO predictions for Z/�⇤+2
jets are obtained from Geneva, which implements a lo-
cal FKS subtraction [64], using tree-level and one-loop
amplitudes from OpenLoops2 [65].

We note that in eq. (59) we have written the highest ac-
curacy as N3LL + NLO2 because for the plots presented
in this paper we are focusing on the T1 spectrum above a
finite value T1 > 0. Removing the ↵

3
s
�(T1) contribution

which is present in the singular term but is missing in the
NLO2 di↵erential cross section, the formula in eq. (59)
can be extended to achieve N3LL + NNLO1 accuracy for
quantities integrated over T1.

We also note that there is some freedom when evaluat-
ing T1 on events with two or three partons. In this work,
we use N -jettiness as a jet algorithm [66] and minimise
over all possible jet directions nJ obtained by an exclusive
clustering procedure eT1 = minnJ

T1. This means that we
recursively cluster together emissions in the E-scheme
using the T1 metric in eq. (1) until we are left with ex-
actly one jet. The resulting jet is then made massless by
rescaling its energy to match the modulus of its three-
momentum; the jet direction is then taken to be ~nJ . We

stress that this choice is intrinsically di↵erent from de-
termining the jet axis a priori by employing an inclusive
jet clustering, as done for example in refs. [18–21].
This di↵erence has also the interesting consequence

that one has to be careful when defining eT1 via the ex-
clusive jet clustering procedure in a frame which depends
on the jet momentum. There are indeed choices of the
clustering metric that render the eT1 variable so defined
infrared (IR) unsafe. A particular example is given by
the frame where the system of the colour-singlet and the
jet has zero rapidity YLJ = 0 (underlying-Born frame)
which was instead previously studied for the inclusive jet
definition [21]. A detailed discussion of these features
and a comparison of the size of nonsingular power cor-
rections for these alternative T1 definitions is beyond the
scope of this work and will be presented elsewhere.

III. NUMERICAL IMPLEMENTATION AND
RESULTS

We consider the process

pp ! (�⇤
/Z ! `

+
`
�) + jet +X ,

at
p
S = 13 TeV and use the NNPDF31 nnlo as 0118

PDF set [67].
The factorisation and renormalisation scales are set

equal to each other and equal to the dilepton transverse
mass,

µR = µF = µFO = mT ⌘

q
M

2

`+`� + q
2

T
, (60)

which we also use as hard scale for the process, i.e.
µH = µFO. At this stage, we also fix Q

2 = sab.
Here we report the numerical parameters used in the

predictions, for ease of reproducibility. We set the fol-
lowing non-zero mass and width parameters

mZ = 91.1876GeV , �Z = 2.4952GeV ,

mW = 80.379GeV , �W = 2.0850GeV ,

mt = 173.1GeV .

In the plots presented in this section, we apply either
a cut T0 > 50 GeV or qT > 100 GeV in order to have a
well-defined Born cross section with a hard jet. However,
since our predictions depend on the choice of the cut
that defines a finite Born cross section, we study di↵erent
variables and values to cut upon in sec. IIID.

A. Resummed and matched predictions

In the upper panel of Fig. 1 we show the absolute val-
ues of the spectra for fixed-order, singular and nonsingu-
lar contributions with T0 > 50 GeV at di↵erent orders in
the strong coupling. We plot on a logarithmic scale in

𝒪(α2
s ) 𝒪(α3

s )
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FIG. 7: Absolute values of the ⌧1 = T1/mT spectra with qT > 50 GeV for fixed-order, singular and nonsingular
contributions at O(↵2

s
) (left) and at pure O(↵3

s
) (right) on a logarithmic scale (upper frames) and signed values for

the nonsingular on a linear scale (lower frames). Results for both the laboratory frame (LAB) and the frame where
the colour-singlet system has zero rapidity (CS) are shown. Statistical errors from Monte Carlo integration, shown

as thin vertical error bars, become sizeable at extremely low ⌧1 values.

above T1/T0 > 1/2 up to the true kinematic limit
T1/T0 = 2/3. In principle this choice a↵ects the size
of the O(↵3

s
) nonsingular contribution across the whole

T1 spectrum. Therefore we have carefully checked that
our choice does not produce numerically significant dif-
ferences with the choice of imposing T1/T0  1/2. In fact,
for the plots shown in Fig. 1 we could only spot a very
minor di↵erence in the largest bins of the ⌧1 distribution.

C. E↵ects of the inclusion of the gg loop-induced
channel

In this subsection we investigate the e↵ect of the in-
clusion of the NLL resummation of the gg loop-induced
channel in addition to the N3LL+NLO2 matched pre-
dictions. Since the gg loop-induced channel starts to
contribute at O(↵3

s
) it is formally necessary to include

it already when the resummation of the other channels
is performed at NNLL0 accuracy. However, as can be
seen in Fig. 6, its contribution is extremely small across
the whole T1 spectrum, reaching a maximum deviation
of around one per mille between 10 and 20 GeV. The fact
that this deviation is smaller than the numerical uncer-

tainty associated with the Monte Carlo integration allows
one to safely neglect this contribution.

D. Results with di↵erent T0 and qT cuts

The resummation of one-jettiness requires the presence
of a hard jet to have a well-defined Born cross section.
In order to investigate the e↵ect of the selection of the
hard jet here we discuss the behaviour of our preditions
for di↵erent values of the T0 cut. We also present re-
sults obtained by requiring that the colour singlet has a
substantial transverse momentum qT , which is equivalent
to requiring the presence of at least one hard jet with a
large kT imbalance compared with other potential jets.
Lowering the T0 cut value to 10 or 1 GeV, we observe
a worsening of the convergence of the resummed predic-
tions. Moreover, the nonsingular contribution increases
with the lowering of the T0 cut value and the distance be-
tween the O(↵2

s
) and O(↵3

s
) contributions widens when

reaching the region T0 ⇠ T1 ⌧ Q. This behaviour can be
easily explained by considering that the factorisation for-
mula in eq. (2) has been derived assuming T1 ⌧ T0 ⇠ Q.
A thorough treatment of this region would necessitate a

‣ Using the Z boson transverse momentum  as Born process defining cutqT
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Two-dimensional profile scales
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FIG. 4: Comparison between resummed and nonsingular contributions at NNLL+LO2 (left) and N3LL+NLO2

(right) for one-jettiness distribution with T0 > 50 GeV. The lower inset shows the ratio to the corresponding
matched prediction.

However, since these are the first nontrivial cor-
rections to the T1 spectrum, their large size is not
completely unexpected and further motivates their
inclusion.

B. Two-dimensional profile scales

A final state with N particles is subject to the kine-
matical constraint

T1(�N )

T0(�N )


N � 1

N
=

(
1/2 , N = 2

2/3 , N = 3
(61)

where we explicitly specify the possible upper bounds
that T1/T0 can have for the NNLO calculation of colour-
singlet plus one jet. Our goal in this section is to formu-
late profile scales that force the resummed prediction to
satisfy the phase space constraint in eq. (61) and at the
same time to have the appropriate scaling at small and
large T1, i.e.

µS(T1 ⌧ µFO) ⇠ T1 ,

µS(T1 ⇠ µFO) ⇠ µFO ,

µS

�
T1/T0 ⇠ (N � 1)/N

�
⇠ µFO . (62)

Both requirements in eqs. (61) and (62) can be satisfied
by formulating two-dimensional profile scales in T1/µFO

and T1/T0. To this end, we choose the soft profile scale
to be

µS

�
T1/µFO,T1/T0

�
(63)

= µFO

⇥�
frun(T1/µFO)� 1

�
s
(p,k)(T1/T0) + 1

⇤

where frun is the same as that appearing in T0 profile
scales used in previous Geneva implementations, see
e.g. ref. [26], while s

(p,k) is a logistic function

s
(p,k)(T1/T0) =

1

1 + epk(T1/T0�1/p)
, (64)

that behaves like a smooth theta function and controls
the transition to µFO for a target T1/T0 value. It depends
on the parameters k and p. The former fixes the slope of
the transition between canonical and fixed-order scaling,
while the latter determines the transition point where
this happens. For our final predictions we use p=2 and
k=100. In app. A we further investigate the dependence
of the resummed results on the way the resummation is
switched o↵ in the T1/T0 direction.
Finally, it is straightforward to get the beam and jet

function profile scales since they are tied to the corre-

A final state with N particles 
is subject to the constraint
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sponding soft profiles by

µB(T1/µFO, T1/T0

�
=

q
µFOµS(T1/µFO, T1/T0

�
, (65)

µJ(T1/µFO, T1/T0

�
=

q
µFOµS(T1/µFO, T1/T0

�
, (66)

and for this process we set the hard scale to be

µH = µFO = mT ⌘

q
m

2

`+`� + q
2

T
. (67)

When calculating scale variations we vary µFO by a factor
of two in either direction. The soft, jet and beam scales
variations are then calculated as detailed in ref. [26] and
summed in quadrature to the hard variations.

Having discussed the implementation of the resummed
predictions, some freedom remains in how to treat the
O(↵3

s
) singular resummed-expanded term. Since for

T1 > T0/2 only the real contribution O(↵3
s
) with three

particles can contribute in the fixed-order, one can de-
cide to completely neglect both the resummed and the
resummed-expanded terms above that threshold. Alter-
natively, one can keep them both on, but with the 2D
profile scales we have chosen the resummed predictions
will naturally match the singular ones for T1 & T0/2 and
the two contributions will cancel again in the matched

predictions, leaving only the fixed-order real contribu-
tion of O(↵3

s
). This behaviour is shown in Fig. 5, where

we plot the NLO2 fixed-order predictions for the T1/T0

ratio, together with the N3LL resummed and singular
ones. We include two copies of the resummed and sin-
gular predictions obtained with and without a hard cut
at T1/T0 = 1/2 on the O(↵3

s
) singular contribution. This

is immediately evident from the fact that the singular
prediction with this cut is zero above T1/T0 = 1/2. The
corresponding resummed prediction does not have the
same sharp jump because of the smoothing of the pro-
file scale, but it still experiences a drastic reduction on a
short T1/T0 range. We also notice that the singular pre-
diction without the hard cut manifests a sudden jump:
this is a consequence of the fact that for T1/T0  1/2 both
the O(↵2

s
) and O(↵3

s
) terms contribute, while above we

only have the O(↵3
s
) terms. The instability of this Su-

dakov shoulder region is also evident in the fixed-order
predictions, showing the typical miscancellation between
soft and collinear O(↵3

s
) real emissions in the region

T1/T0 > 1/2. These are not compensated by their vir-
tual counterparts, which are confined to the T1/T0  1/2
region.

For the predictions obtained in this work we have cho-
sen to allow the singular contribution at order O(↵3

s
)
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FIG. 4: Comparison between resummed and nonsingular contributions at NNLL+LO2 (left) and N3LL+NLO2

(right) for one-jettiness distribution with T0 > 50 GeV. The lower inset shows the ratio to the corresponding
matched prediction.

However, since these are the first nontrivial cor-
rections to the T1 spectrum, their large size is not
completely unexpected and further motivates their
inclusion.

B. Two-dimensional profile scales

A final state with N particles is subject to the kine-
matical constraint

T1(�N )

T0(�N )


N � 1

N
=

(
1/2 , N = 2

2/3 , N = 3
(61)

where we explicitly specify the possible upper bounds
that T1/T0 can have for the NNLO calculation of colour-
singlet plus one jet. Our goal in this section is to formu-
late profile scales that force the resummed prediction to
satisfy the phase space constraint in eq. (61) and at the
same time to have the appropriate scaling at small and
large T1, i.e.

µS(T1 ⌧ µFO) ⇠ T1 ,

µS(T1 ⇠ µFO) ⇠ µFO ,

µS

�
T1/T0 ⇠ (N � 1)/N

�
⇠ µFO . (62)

Both requirements in eqs. (61) and (62) can be satisfied
by formulating two-dimensional profile scales in T1/µFO

and T1/T0. To this end, we choose the soft profile scale
to be

µS

�
T1/µFO,T1/T0

�
(63)

= µFO

⇥�
frun(T1/µFO)� 1

�
s
(p,k)(T1/T0) + 1

⇤

where frun is the same as that appearing in T0 profile
scales used in previous Geneva implementations, see
e.g. ref. [26], while s

(p,k) is a logistic function

s
(p,k)(T1/T0) =

1

1 + epk(T1/T0�1/p)
, (64)

that behaves like a smooth theta function and controls
the transition to µFO for a target T1/T0 value. It depends
on the parameters k and p. The former fixes the slope of
the transition between canonical and fixed-order scaling,
while the latter determines the transition point where
this happens. For our final predictions we use p=2 and
k=100. In app. A we further investigate the dependence
of the resummed results on the way the resummation is
switched o↵ in the T1/T0 direction.
Finally, it is straightforward to get the beam and jet

function profile scales since they are tied to the corre-
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However, since these are the first nontrivial cor-
rections to the T1 spectrum, their large size is not
completely unexpected and further motivates their
inclusion.

B. Two-dimensional profile scales

A final state with N particles is subject to the kine-
matical constraint
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where we explicitly specify the possible upper bounds
that T1/T0 can have for the NNLO calculation of colour-
singlet plus one jet. Our goal in this section is to formu-
late profile scales that force the resummed prediction to
satisfy the phase space constraint in eq. (61) and at the
same time to have the appropriate scaling at small and
large T1, i.e.

µS(T1 ⌧ µFO) ⇠ T1 ,

µS(T1 ⇠ µFO) ⇠ µFO ,
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Both requirements in eqs. (61) and (62) can be satisfied
by formulating two-dimensional profile scales in T1/µFO

and T1/T0. To this end, we choose the soft profile scale
to be
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frun(T1/µFO)� 1
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where frun is the same as that appearing in T0 profile
scales used in previous Geneva implementations, see
e.g. ref. [26], while s

(p,k) is a logistic function

s
(p,k)(T1/T0) =

1

1 + epk(T1/T0�1/p)
, (64)

that behaves like a smooth theta function and controls
the transition to µFO for a target T1/T0 value. It depends
on the parameters k and p. The former fixes the slope of
the transition between canonical and fixed-order scaling,
while the latter determines the transition point where
this happens. For our final predictions we use p=2 and
k=100. In app. A we further investigate the dependence
of the resummed results on the way the resummation is
switched o↵ in the T1/T0 direction.
Finally, it is straightforward to get the beam and jet

function profile scales since they are tied to the corre-
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FIG. 9: Functional form of the two-dimensional soft
profile scale.
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FIG. 10: Resummed results for one-jettiness distribution
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profile with s
(3,10)(T1/T0).

ferent definition of T1 (which incorporates a longitudinal
boost to the frame where the vector boson has zero ra-
pidity) receives smaller power corrections. This makes it
suitable for slicing calculations at NNLO and for use in
Monte Carlo event generators which match fixed order
predictions to parton shower programs.

The N -jettiness variable is particularly useful in the
context of constructing higher-order event generators,
since it is able to act as a resolution variable which
divides the phase space into exclusive jet bins. In this
context, the NNLL0 resummed zero-jettiness spectrum
has enabled the construction of NNLO+PS generators
for colour-singlet production using the Geneva method.
The availability of an equally accurate prediction for T1

in hadronic collisions will now enable these generators
to be extended to cover the case of colour singlet
production in association with a jet. The predictions
presented in this work will be made public in a future
release of Geneva.
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is correctly described by fixed-order predictions. In ad-
dition, T1 is subject to the constraint T1/T0  1� 1/N ,
with N=2 (N=3) at NLO (NNLO). Therefore, in order
to achieve a proper description throughout the T1 spec-
trum while satisfying the T1/T0 constraint, we construct
two-dimensional (2D) profile scales that modulate the
transition to the FO region as a function of both T1/µFO

and T1/T0, with µFO the fixed-order scale. These profile
scales correctly implement the phase space constraint in
T1/T0, reducing to T1-dependent profile scales when it is
satisfied and asymptoting to µFO when it is violated. A
detailed discussion of our 2D profile scale construction is
given in sec. III B.

A reliable theoretical prediction must include a thor-
ough uncertainty estimate by exploring the entire space
of possible scale variations. In our analysis, we achieve
this by means of T1 profile scale variations, see e.g.
ref. [26]. Specifically, our final uncertainty is obtained
by separately estimating the uncertainties related to re-
summation and the FO perturbative expansion. Since
these are considered to be uncorrelated, we sum them in
quadrature.

In order to achieve a valid description also in the tail
region of the one-jettiness distribution, this resummed
result is matched to the NLO predictions for �⇤

/Z+2 jets
production (NLO2), using a standard additive matching
prescription

d�N
3
LL+NLO2

d�1dT1
=
d�N

3
LL

d�1dT1
+

d�Nons.

d�1dT1
, (59)

d�Nons.

d�1dT1
=

0

@d�NLO2

d�1dT1
�

d�N
3
LL

d�1dT1

�����
O(↵2

s
)

1

A ✓(T1) ,

where the last term of the second equation above is the
NNLO singular contribution. Similar formulae readily
apply at lower orders. The NLO predictions for Z/�⇤+2
jets are obtained from Geneva, which implements a lo-
cal FKS subtraction [64], using tree-level and one-loop
amplitudes from OpenLoops2 [65].

We note that in eq. (59) we have written the highest ac-
curacy as N3LL + NLO2 because for the plots presented
in this paper we are focusing on the T1 spectrum above a
finite value T1 > 0. Removing the ↵

3
s
�(T1) contribution

which is present in the singular term but is missing in the
NLO2 di↵erential cross section, the formula in eq. (59)
can be extended to achieve N3LL + NNLO1 accuracy for
quantities integrated over T1.

We also note that there is some freedom when evaluat-
ing T1 on events with two or three partons. In this work,
we use N -jettiness as a jet algorithm [66] and minimise
over all possible jet directions nJ obtained by an exclusive
clustering procedure eT1 = minnJ

T1. This means that we
recursively cluster together emissions in the E-scheme
using the T1 metric in eq. (1) until we are left with ex-
actly one jet. The resulting jet is then made massless by
rescaling its energy to match the modulus of its three-
momentum; the jet direction is then taken to be ~nJ . We

stress that this choice is intrinsically di↵erent from de-
termining the jet axis a priori by employing an inclusive
jet clustering, as done for example in refs. [18–21].
This di↵erence has also the interesting consequence

that one has to be careful when defining eT1 via the ex-
clusive jet clustering procedure in a frame which depends
on the jet momentum. There are indeed choices of the
clustering metric that render the eT1 variable so defined
infrared (IR) unsafe. A particular example is given by
the frame where the system of the colour-singlet and the
jet has zero rapidity YLJ = 0 (underlying-Born frame)
which was instead previously studied for the inclusive jet
definition [21]. A detailed discussion of these features
and a comparison of the size of nonsingular power cor-
rections for these alternative T1 definitions is beyond the
scope of this work and will be presented elsewhere.

III. NUMERICAL IMPLEMENTATION AND
RESULTS

We consider the process

pp ! (�⇤
/Z ! `

+
`
�) + jet +X ,

at
p
S = 13 TeV and use the NNPDF31 nnlo as 0118

PDF set [67].
The factorisation and renormalisation scales are set

equal to each other and equal to the dilepton transverse
mass,

µR = µF = µFO = mT ⌘

q
M

2

`+`� + q
2

T
, (60)

which we also use as hard scale for the process, i.e.
µH = µFO. At this stage, we also fix Q

2 = sab.
Here we report the numerical parameters used in the

predictions, for ease of reproducibility. We set the fol-
lowing non-zero mass and width parameters

mZ = 91.1876GeV , �Z = 2.4952GeV ,

mW = 80.379GeV , �W = 2.0850GeV ,

mt = 173.1GeV .

In the plots presented in this section, we apply either
a cut T0 > 50 GeV or qT > 100 GeV in order to have a
well-defined Born cross section with a hard jet. However,
since our predictions depend on the choice of the cut
that defines a finite Born cross section, we study di↵erent
variables and values to cut upon in sec. IIID.

A. Resummed and matched predictions

In the upper panel of Fig. 1 we show the absolute val-
ues of the spectra for fixed-order, singular and nonsingu-
lar contributions with T0 > 50 GeV at di↵erent orders in
the strong coupling. We plot on a logarithmic scale in
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T1/T0, reducing to T1-dependent profile scales when it is
satisfied and asymptoting to µFO when it is violated. A
detailed discussion of our 2D profile scale construction is
given in sec. III B.

A reliable theoretical prediction must include a thor-
ough uncertainty estimate by exploring the entire space
of possible scale variations. In our analysis, we achieve
this by means of T1 profile scale variations, see e.g.
ref. [26]. Specifically, our final uncertainty is obtained
by separately estimating the uncertainties related to re-
summation and the FO perturbative expansion. Since
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the strong coupling. We plot on a logarithmic scale in
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is correctly described by fixed-order predictions. In ad-
dition, T1 is subject to the constraint T1/T0  1� 1/N ,
with N=2 (N=3) at NLO (NNLO). Therefore, in order
to achieve a proper description throughout the T1 spec-
trum while satisfying the T1/T0 constraint, we construct
two-dimensional (2D) profile scales that modulate the
transition to the FO region as a function of both T1/µFO

and T1/T0, with µFO the fixed-order scale. These profile
scales correctly implement the phase space constraint in
T1/T0, reducing to T1-dependent profile scales when it is
satisfied and asymptoting to µFO when it is violated. A
detailed discussion of our 2D profile scale construction is
given in sec. III B.

A reliable theoretical prediction must include a thor-
ough uncertainty estimate by exploring the entire space
of possible scale variations. In our analysis, we achieve
this by means of T1 profile scale variations, see e.g.
ref. [26]. Specifically, our final uncertainty is obtained
by separately estimating the uncertainties related to re-
summation and the FO perturbative expansion. Since
these are considered to be uncorrelated, we sum them in
quadrature.

In order to achieve a valid description also in the tail
region of the one-jettiness distribution, this resummed
result is matched to the NLO predictions for �⇤

/Z+2 jets
production (NLO2), using a standard additive matching
prescription

d�N
3
LL+NLO2

d�1dT1
=
d�N

3
LL

d�1dT1
+

d�Nons.

d�1dT1
, (59)

d�Nons.

d�1dT1
=

0

@d�NLO2

d�1dT1
�

d�N
3
LL

d�1dT1

�����
O(↵2

s
)

1

A ✓(T1) ,

where the last term of the second equation above is the
NNLO singular contribution. Similar formulae readily
apply at lower orders. The NLO predictions for Z/�⇤+2
jets are obtained from Geneva, which implements a lo-
cal FKS subtraction [64], using tree-level and one-loop
amplitudes from OpenLoops2 [65].

We note that in eq. (59) we have written the highest ac-
curacy as N3LL + NLO2 because for the plots presented
in this paper we are focusing on the T1 spectrum above a
finite value T1 > 0. Removing the ↵

3
s
�(T1) contribution

which is present in the singular term but is missing in the
NLO2 di↵erential cross section, the formula in eq. (59)
can be extended to achieve N3LL + NNLO1 accuracy for
quantities integrated over T1.

We also note that there is some freedom when evaluat-
ing T1 on events with two or three partons. In this work,
we use N -jettiness as a jet algorithm [66] and minimise
over all possible jet directions nJ obtained by an exclusive
clustering procedure eT1 = minnJ

T1. This means that we
recursively cluster together emissions in the E-scheme
using the T1 metric in eq. (1) until we are left with ex-
actly one jet. The resulting jet is then made massless by
rescaling its energy to match the modulus of its three-
momentum; the jet direction is then taken to be ~nJ . We

stress that this choice is intrinsically di↵erent from de-
termining the jet axis a priori by employing an inclusive
jet clustering, as done for example in refs. [18–21].
This di↵erence has also the interesting consequence

that one has to be careful when defining eT1 via the ex-
clusive jet clustering procedure in a frame which depends
on the jet momentum. There are indeed choices of the
clustering metric that render the eT1 variable so defined
infrared (IR) unsafe. A particular example is given by
the frame where the system of the colour-singlet and the
jet has zero rapidity YLJ = 0 (underlying-Born frame)
which was instead previously studied for the inclusive jet
definition [21]. A detailed discussion of these features
and a comparison of the size of nonsingular power cor-
rections for these alternative T1 definitions is beyond the
scope of this work and will be presented elsewhere.

III. NUMERICAL IMPLEMENTATION AND
RESULTS

We consider the process

pp ! (�⇤
/Z ! `

+
`
�) + jet +X ,

at
p
S = 13 TeV and use the NNPDF31 nnlo as 0118

PDF set [67].
The factorisation and renormalisation scales are set

equal to each other and equal to the dilepton transverse
mass,

µR = µF = µFO = mT ⌘

q
M

2

`+`� + q
2

T
, (60)

which we also use as hard scale for the process, i.e.
µH = µFO. At this stage, we also fix Q

2 = sab.
Here we report the numerical parameters used in the

predictions, for ease of reproducibility. We set the fol-
lowing non-zero mass and width parameters

mZ = 91.1876GeV , �Z = 2.4952GeV ,

mW = 80.379GeV , �W = 2.0850GeV ,

mt = 173.1GeV .

In the plots presented in this section, we apply either
a cut T0 > 50 GeV or qT > 100 GeV in order to have a
well-defined Born cross section with a hard jet. However,
since our predictions depend on the choice of the cut
that defines a finite Born cross section, we study di↵erent
variables and values to cut upon in sec. IIID.

A. Resummed and matched predictions

In the upper panel of Fig. 1 we show the absolute val-
ues of the spectra for fixed-order, singular and nonsingu-
lar contributions with T0 > 50 GeV at di↵erent orders in
the strong coupling. We plot on a logarithmic scale in
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NNLO results via 1-jettiness slicing
‣ Important to test the NNLO accuracy of the calculation: we expanded our matching  formula 

to NNLO (one-jettiness slicing) and compared the pure  correction with NNLOJET𝒪(α3
s )

Very Preliminary!!

XS with  cuts𝒯0 XS with  cutsqT

dσδNNLO

dΦ1
=

dσN3LL(𝒯cut
1 )

dΦ1 𝒪(α3
s )

+ ∫
𝒯max

1

𝒯cut
1

d𝒯1
dσδNLO2

dΦ1d𝒯1
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NNLO results differential distributions

Very Preliminary!!

 distribution𝒯0  distributionqT

𝒪(α3
s ) only 𝒪(α3

s ) only
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NNLO results differential distributions

Very Preliminary!!

 distribution𝒯0  distributionqT

𝒪(α3
s ) only𝒪(α3
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