Theory uncertainties with theory nuisance parameters and α_S from the $Z p_T$

RAS - 22/08/24 CERN Giulia Marinelli DESY, Hamburg

in collaboration with T. Cridge and F. Tackmann

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE **European Research Council** Established by the European Commission

TNPs for Boundary Conditions

Estimate of $\theta_n^F(n_f)$ from a generic sample of known and independent series

 $F_n(\theta_n) = 4C_r(4C_A)^{n-1}(n-1)!\theta_n^F(n_f)$

TNPs for Boundary Conditions

Estimate of $\theta_n^F(n_f)$ from a generic sample of known and independent series

 $F_{n}(\theta_{n}) = 4C_{r}(4C_{A})^{n-1}(n-1)!\theta_{n}^{F}(n_{f})$

TNPs for Anomalous Dimensions

Estimate of $\theta_n^{\gamma}(n_f)$ from a generic sample of known and independent series

 $\gamma_n(\theta_n) = 2C_r(4C_A)^n \; \theta_n^{\gamma}(n_f)$

TNPs for Anomalous Dimensions

Estimate of $\theta_n^{\gamma}(n_f)$ from a generic sample of known and independent series

 $\gamma_n(\theta_n) = 2C_r(4C_A)^n \; \theta_n^{\gamma}(n_f)$

Application of TNPs to $\mathbb{Z}p_T$ spectrum

Nomenclature: Nⁿ⁺¹LL

 $N^{n+1}LL$ resummation + highest-order boundary conditions/anomalous dim. as TNPs

>> Varying each θ_i independently

>> Add in quadrature for the total uncertainty

>> For the beams B_{qj} : $f_n = (0 \pm 1.5) \times f_n^{\text{true}}$, DGLAP splitting functions not varied

Asimov test fitting $\alpha_S(m_Z)$ from $Z p_T$

Play with TNPs to study the expected uncertainty/sensitivity on α_S on toy data (Asimov test)

>> Very precise ATLAS measurement at $\sqrt{S} = 8$ TeV: [arXiv 2309.09318 and 2309.12986] based on N³LO+N⁴LLa theoretical predictions from DYTurbo;

 $\alpha_S(m_Z) = 0.1183 \pm 0.0009$

In units of 10^{-3}		
Experimental uncertainty	±0.44	
PDF uncertainty	±0.51	
Scale variation uncertainties	±0.42	
Matching to fixed order	0	-0.08
Non-perturbative model	+0.12	-0.20
Flavour model	+0.40	-0.29
QED ISR	±0.14	
N ⁴ LL approximation	± 0.04	
Total	+0.91	-0.88

Asimov test fitting $\alpha_S(m_Z)$ from $Z p_T$

Play with TNPs to study the expected uncertainty/sensitivity on α_S on toy data (Asimov test)

>> Very precise ATLAS measurement at $\sqrt{S} = 8$ TeV: [arXiv 2309.09318 and 2309.12986] based on N³LO+N⁴LLa theoretical predictions from DYTurbo;

Our theory inputs:

> SCETlib only resummed contribution

[default central scales and variations, no mass corrections and nonsingular power corrections]

<u>Our toy data:</u>

Data defined as central theory prediction [$\alpha_s(m_z) = 0.118$, fixed nonp. params, MSHT20aN3LO PDF set]

Only 9 q_T points in [0,29] GeV by ATLAS binning [fixed $Q = m_Z$ and Y = 0 just for simplicity]

Using ATLAS exp. uncertainties and correlations, integrated over |Y| < 1.6;

Asimov fit result for scale variations

Shape of scale (theory) variation, within the band, strongly effects the result; uncertainty $\sim \pm 1$ (in units of 10^{-3}), where 1 means 0.118 $\rightarrow 0.117$ or 0.119

Sum in quadrature: $\Delta_{total} = \sqrt{\Delta_{FO}^2 + \Delta_{resum}^2 + \Delta_{match}^2} \sim 2.6$ [neglecting μ_f] Envelope: $\Delta_{total} \sim 2.1$ * uncertainties in units of 10^{-3}

8/16.

Asimov fit result for TNPs

Repeat fit for each TNP variation, using TNPs at N³⁺¹LL; still does not let the fit decide what to do with α_S (moving the theory or α_S directly?)

TNPs correctly account for their correlations \Rightarrow sum in quadrature: $\Delta_{total} = 1.6$

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_S together with all TNPs (allow the fit to decide what to do)

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_s together with all TNPs (allow the fit to decide what to do)

> data = central [$\alpha_s(m_z) = 0.118$] N²⁺¹LL theory prediction against N²⁺¹LL model

* uncertainties in units of 10^{-3}

10/16.

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_S together with all TNPs (allow the fit to decide what to do)

Ata = central [$\alpha_S(m_Z) = 0.118$] N²⁺¹LL theory prediction against N²⁺¹LL model

* uncertainties in units of 10^{-3}

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_S together with all TNPs (allow the fit to decide what to do)

A data = central [$\alpha_S(m_Z) = 0.118$] N²⁺¹LL theory prediction against N²⁺¹LL model data = central N³⁺¹LL theory prediction against N²⁺¹LL model

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_S together with all TNPs (allow the fit to decide what to do)

- > data = central [$\alpha_S(m_Z) = 0.118$] N²⁺¹LL theory prediction against N²⁺¹LL model
- > data = central $N^{3+1}LL$ theory prediction against $N^{2+1}LL$ model
- Add at a = central $N^{3+1}LL$ theory prediction against $N^{3+1}LL$ model

* uncertainties in units of 10^{-3}

Scanning: vary one TNP at a time and re-fit α_S

Profiling: fitting α_S together with all TNPs (allow the fit to decide what to do)

- > data = central [$\alpha_S(m_Z) = 0.118$] N²⁺¹LL theory prediction against N²⁺¹LL model
- > data = central $N^{3+1}LL$ theory prediction against $N^{2+1}LL$ model
- Add at a = central $N^{3+1}LL$ theory prediction against $N^{3+1}LL$ model

Constraints on TNPs

 \gg N²⁺¹LL: TNPs much more constrained than at N³⁺¹LL

>> If TNPs get strongly constrained, the next order becomes relevant for the uncertainty correlations!

Constraints on TNPs

data = central $N^{3+1}LL$ theory prediction against $N^{2+1}LL$ theory model

As expected, some TNPs are strongly pulled this is another indication that $N^{2+1}LL$ is just not enough

Using now $\mu = 0$ but $\sigma = 0.5, 1, 2, 4$:

>> Similar increase in the uncertainties when relaxing the TNPs constraint

Further reducing the uncertainty worth it! [exp. uncertainty ~ theo. uncertainty]

Using now $\mu = 0$ but $\sigma = 0.5$:

Using now $\mu = 0$ but $\sigma = 1$:

Using now $\mu = 0$ but $\sigma = 2$:

Using now $\mu = 0$ but $\sigma = 4$:

Need for theoretical predictions with reliable uncertainties including correlations for interpretation of LHC precision measurements:

Theory Nuisance Parameters perfect candidate

 \gg include correct correlations across the p_T spectrum

>> can be constrained by data reducing theory uncertainty

>> value of σ doesn't really matter once profiling and exp. uncertainty sufficiently small

>> so far work as advertised for Asimov tests

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)

European Research Council

Established by the European Commission