MadGraph4GPU

Kernel Profiling

A. Thete & C. Vuosalo
University of Wisconsin-Madison

11.06.2023

Launch Configuration

e Jobs run on a shared node with a single NVIDIA A100 GPU (Compute Capability 8.0) with a 40GB DRAM
« nvcce 12.1.105, kernel launch configuration: <<<216 blocks, 256 threads/block>>>
* More relevant A100 stats:

e 128 SMs

e 64 fp32 units/SM, 32 fp64 units/SM

« 64 warps/SM

« 1555 GB/s memory bandwidth

256 KB reqister file/SM; upto 255 registers/thread

 Upto 164 KB Shared Memory/SM

Overview

e Profiling mghamcGpu: :sigmaKin for the process gg -> ttgg
¢ Speed-of-light Metrics

e GPU wall time: 67.28 ms
 High memory throughput (63.9%); cf compute (39.08%) — kernel is memory-bound

 Achieved fp64 performance is 10% lower than the fp64 pipeline utilization — indicates inefficient fp64 operations under the hood

* Normally, branches are largest source of latency

« 100% branch efficiency, 0 divergent branches — all threads in a warp execute same sequence of instructions

Roofline Plot

p— N
=
oo
O o
|

L.Lo
—ao
80
c 3
(4]

EO
hC:)
O
[Vt

|

[

a o

Arithmetic Intensity [FLOP/byte]

 Red point is our achieved double precision (2.18 FLOP/byte, 2.1 TFLOPs/s); theoretical maximum (4.86 FLOP/byte, 7.5 TFLOPSs/s)
 \ery close to the roofline, so the kernel is pretty optimal as it is; can’t expect a very drastic improvement.

* Position on the plot indicates a memory-bound kernel, performance can be improved by increasing memory bandwidth and moving
point “up”.

Memory Analysis

 Throughput of internal memory activity (cache/DRAM) is only 29.53%, but each warp spends 7.6 cycles being stalled waiting for a
L1 cache dependency.

« Each warp is resident for 16.7 cycles — 45% of warp time spent stalled!
* Two memory bottlenecks in the source code:

 CUDA Thrust libraries (can’t do anything about this).

« Line 1107 in FEV1 0 of HelAmps_sm.h to compute output amplitude vertex from input 3 wavefunctions

const cxtype sv TMPS = (F1[2] * (F2[4] * (V3[2] + V3[>5]) + F2[5] * (V3[3] + cI * V3[4]))
T .

 HelAmps_sm.h is a madgraph-generated file for the process.
* Bottleneck can be eased by either increasing hit rates or moving more frequently used data to shared memory
* Hit rates at ~46% and ~66% for L1 and L2; no shared memory utilization at all (intentional?).

 Memory accesses appear to be well-coalesced, built into the code too via the AOSOA representation format used.

Memory Analysis

83.51 M Inst

331.20M Inst

0.00 Inst

0.00 Inst

0.00 Inst

83.39 M Req

11578 K Reg

879.44 M Req

277.67 M Req

L1/TEX
Cache

Hit Rate:

45.66 %

Memory Chart

53.62GB

35.52 GB

L2 Cache

Hit Rate:
65.27 %

L2 Compression

Ratio:
0.00

70.57 GB

o

a2y

stem

Memory

Compute Analysis

« Memory bottleneck leaking into compute performance too

 Kernel allocates ~2 warps/scheduler (cf. theoretical max of 16). Occupancy is being limited by the number of registers available to
each thread

 High occupancy not always an indicator of better performance, but still needs to be investigated.
 Launch: 255 regs/thread; maximum utilized: 248 by the bottleneck

 Out of the two active warps, each cycle only 0.17 eligible for next instruction (others are stalled)
* More parallelism can be exposed by efficiently utilizing our fp64 pipeline.

 1.6B non-fused fp64 instructions (cf 1.4B fused); by converting pairs of non-fused instructions to their fused counterparts,
achieved fp64 performance could be increased by up to 27%.

 nvcc enables this by default (compiler flag — fmad=true), but still got this warning so don’t know what to make of it.

