
11.06.2023

MadGraph4GPU
Kernel Profiling

A. Thete & C. Vuosalo
University of Wisconsin-Madison

Launch Configuration
• Jobs run on a shared node with a single NVIDIA A100 GPU (Compute Capability 8.0) with a 40GB DRAM

• nvcc 12.1.105, kernel launch configuration: <<<216 blocks, 256 threads/block>>>

• More relevant A100 stats:

• 128 SMs

• 64 fp32 units/SM, 32 fp64 units/SM

• 64 warps/SM

• 1555 GB/s memory bandwidth

• 256 KB register file/SM; upto 255 registers/thread

• Upto 164 KB Shared Memory/SM

Overview
• Profiling mg5amcGpu::sigmaKin for the process gg -> ttgg

• Speed-of-light Metrics

• GPU wall time: 67.28 ms

• High memory throughput (63.9%); cf compute (39.08%) — kernel is memory-bound

• Achieved fp64 performance is 10% lower than the fp64 pipeline utilization — indicates inefficient fp64 operations under the hood

• Normally, branches are largest source of latency

• 100% branch efficiency, 0 divergent branches — all threads in a warp execute same sequence of instructions

Roofline Plot

• Red point is our achieved double precision (2.18 FLOP/byte, 2.1 TFLOPs/s); theoretical maximum (4.86 FLOP/byte, 7.5 TFLOPs/s)

• Very close to the roofline, so the kernel is pretty optimal as it is; can’t expect a very drastic improvement.

• Position on the plot indicates a memory-bound kernel, performance can be improved by increasing memory bandwidth and moving
point “up”.

Memory Analysis
• Throughput of internal memory activity (cache/DRAM) is only 29.53%, but each warp spends 7.6 cycles being stalled waiting for a

L1 cache dependency.

• Each warp is resident for 16.7 cycles — 45% of warp time spent stalled!

• Two memory bottlenecks in the source code:

• CUDA Thrust libraries (can’t do anything about this).

• Line 1107 in FFV1_0 of HelAmps_sm.h to compute output amplitude vertex from input 3 wavefunctions

 const cxtype_sv TMP9 = (F1[2] * (F2[4] * (V3[2] + V3[5]) + F2[5] * (V3[3] + cI * V3[4]))
+ . . .

• HelAmps_sm.h is a madgraph-generated file for the process.

• Bottleneck can be eased by either increasing hit rates or moving more frequently used data to shared memory

• Hit rates at ~46% and ~66% for L1 and L2; no shared memory utilization at all (intentional?).

• Memory accesses appear to be well-coalesced, built into the code too via the AOSOA representation format used.

Memory Analysis

Compute Analysis
• Memory bottleneck leaking into compute performance too

• Kernel allocates ~2 warps/scheduler (cf. theoretical max of 16). Occupancy is being limited by the number of registers available to
each thread

• High occupancy not always an indicator of better performance, but still needs to be investigated.

• Launch: 255 regs/thread; maximum utilized: 248 by the bottleneck

• Out of the two active warps, each cycle only 0.17 eligible for next instruction (others are stalled)

• More parallelism can be exposed by efficiently utilizing our fp64 pipeline.

• 1.6B non-fused fp64 instructions (cf 1.4B fused); by converting pairs of non-fused instructions to their fused counterparts,
achieved fp64 performance could be increased by up to 27%.

• nvcc enables this by default (compiler flag —-fmad=true), but still got this warning so don’t know what to make of it.

