Run of MadGraph on GPU with CUDA backend and LHAPDF and profile with flamegraphs

Runs performed on itscrd90.cern.ch machine:

- gcc 11.3.1
- Cuda compilation tools, release 12.0, V12.0.140
- madgraph4gpu@a87e64037a8c941bf2ec3bfd78e7a38578c1d1b8

Building LHAPDF

For the python API, need Python and Cython.

Clone the repo and build with the following options, so that debug symbols are included:

```
autoreconf -i
./configure --prefix_absolute_path> --enable-static CXXFLAGS="-02 -g -fno-omit-frame-pointer"
make -j4
make install
```

Set the paths:

```
prefix=<prefix_absolute_path>
export PATH="$prefix/bin":$PATH
export PYTHONPATH="$prefix/lib64/python3.9/site-packages:$PYTHONPATH" # if built with python
export LD_LIBRARY_PATH="${prefix}/lib:$LD_LIBRARY_PATH"
export LHAPDF_DATA_PATH="/cvmfs/sft.cern.ch/lcg/external/lhapdfsets/current/"
```

LHAPDF_DATA_PATH contains the downloaded PDF sets, so no need to do that manually.

Compile MadGraph with LHAPDF

Needs to make few changes:

- source the LHAPDF environment variables as shown above;
- add the lhapdf-config file to the ../../Source/make_opts flags:

lhapdf=<prefix_absolute_path>/bin/lhapdf-config

Compile MadGraph with the usual commands, see HERE for more details.

```
make BACKEND=cuda OMPFLAGS= -f cudacpp.mk -j4
make -C .../../Source -j4
make BACKEND=cuda -j4
```

Running MadGraph and various issues

Fail 1: Could not find PDFsets directory, quitting

Due to MadGraph automatic check of the folder where the PDF sets are stored:

- looks for lib/PDFsets somewhere in the project directory;
- done in .../.../Source/PDF/pdfwrap_lhapdf.f, around line 81, in the subroutine FINDPDFPATH().
- not a robust check, only looking for at most 6 folders up from the current directory: if that folder is found alsewhere or it is not called lib/PDFsets literally, then it is not found and the error is thrown;
- however check is not needed because path is exported in LHAPDF_DATA_PATH environment variable and LHAPDF will always find the PDFs by itself.

Here is the snippet from ../../Source/PDF/pdfwrap_lhapdf.f:

```
LHAPATH='lib/PDFsets'
INQUIRE(file=LHAPATH, EXIST=EXISTS)
IF(EXISTS)RETURN
UPNAME='../../../../../'
DO I=1,6
TEMPNAME2=PATH(:FINE2)//UPNAME(:3*I)//LHAPATH 1 of 3
```

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/

```
C LHAPath=up//LHAPath
INQUIRE(file=TEMPNAME2, EXIST=EXISTS)
IF(EXISTS)THEN
LHAPATH = TEMPNAME2
RETURN
ENDIF
ENDDO
PRINT*, 'Could not find PDFsets directory, quitting'
STOP
```

SOLUTION: skip this function by commenting its call out. Additionally, comment also the **SETPDFPATH** subroutine call for the same reason: that subroutine will just set the path inside the LHAPDF object, which is not needed if the path is already set in the environment variable.

Fail 2: PDLABELnn23xxx not found

This error occurs because, when using LHAPDF library, the PDFLABEL should be set to lhapdf: To be changed in:

- Cards/run_card.dat;
- Source/run_card.inc.

Results

Process: $gg ightarrow t\overline{t}gg$.

Perform runs with very high number of events, so that the time-consuming part stands out more with respect to the GPU initialization and setup. Use the following input.txt:

```
26214422!Number of events and max and min iterations0.1!Accuracy0!Grid Adjustment 0=none, 2=adjust0!Suppress Amplitude 1=yes0!Helicity Sum/event 0=exact1
```

This will generate a total of **802816** events.

Additionally, modify the flamegraph script to not print the unknown, but to print the symbol name followed by the pointer address, so that the names are unique and the various unknown blocks are not merged within each other.

Runs have been performed both with and without LHAPDF library (to compare the time saved by just using the C++ implementation instead of the native FORTRAN implementation in MadGraph), and both FORTRAN and CUDA backends (to check that the number of calls to LHAPDF is consistent).

CUDA

- w/ LHAPDF
- w/o LHAPDF

FORTRAN

- w/ LHAPDF
- w/o LHAPDF

Timings as given by madevent

Average of 10.

	CUDA w/ LHAPDF	CUDA w/o LHAPDF	FORTRAN w/ LHAPDF	FORTRAN w/o LHAPDF
FORTRAN Overhead	10.4023	17.4328	9.72641	16.7207
CUDA cpp MEs	2.15152	2.14973	408.712	407.811
Program total	12.55382	19.58253	418.43841	424.5317

Perf stat

• w/ LHAPDF

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/

• w/o LHAPDF

Comparison with/without LHAPDF:

	12,774.34 msec	task-clock	#		1	19,868.78 msec	task-clock	#	
	292	context-switches	#	2	L	344	context-switches	#	1
	6	cpu-migrations	#		L	4	cpu-migrations	#	
	5,749	page-faults	#	45	L	4,603	page-faults	#	23
	38,738,465,319	cycles	#		L	60,358,592,417	cycles	#	
	79,843,864,971	instructions	#		L	154,662,612,426	instructions	#	
	15,611,188,417	branches	#		L	29,373,142,218	branches	#	
	124,217,959	branch-misses	#		I	115,744,389	branch-misses	#	
13.347107965 seconds time elapsed				I	19.919600172 seco	nds time elapsed			
12.045233000 seconds user				L	19.086128000 seco	nds user			
	0.650045000 secor	nds sys			L	0.660382000 seco	nds sys		

Comments

- With around 800k events, already with LHAPDF we see a speedup of 3x with respect to the native MadGraph implementation.
- CUDA: pdg2pdf passes from the 40% with no LHAPDF to 9% with LHAPDF.
- CUDA: pdg2pdf is called 3 times (or, at least, we can record 3 records, which means it is called *at least* 3 times) in both scenarios with/without LHAPDF, and it takes the same time. This means it is not probably been cached like Oliver once suggested it should be.
- FORTRAN: in the case without LHAPDF, the pdg2pdf is called 3 times, each one with the same time length. Also not cached as expected.

Next steps

- Profile the current FORTRAN release of MadGraph to understand whether the caching mechanism of the PDFs is working (this could have been overlooked while implementing the CUDA version).
- Profile with AdaptivePerf to both have a new way of generating flamegraphs and to also have a chronological view of the code.