
Run of MadGraph on GPU with CUDA backend and LHAPDF
and profile with flamegraphs
Runs performed on itscrd90.cern.ch machine:

• gcc 11.3.1

• Cuda compilation tools, release 12.0, V12.0.140

• madgraph4gpu@a87e64037a8c941bf2ec3bfd78e7a38578c1d1b8

Building LHAPDF

For the python API, need Python and Cython.

Clone the repo and build with the following options, so that debug symbols are included:

autoreconf -i

./configure --prefix=<prefix_absolute_path> --enable-static CXXFLAGS="-O2 -g -fno-omit-frame-pointer"

make -j4

make install

Set the paths:

prefix=<prefix_absolute_path>

export PATH="$prefix/bin":$PATH

export PYTHONPATH="$prefix/lib64/python3.9/site-packages:$PYTHONPATH" # if built with python

export LD_LIBRARY_PATH="${prefix}/lib:$LD_LIBRARY_PATH"

export LHAPDF_DATA_PATH="/cvmfs/sft.cern.ch/lcg/external/lhapdfsets/current/"

LHAPDF_DATA_PATH contains the downloaded PDF sets, so no need to do that manually.

Compile MadGraph with LHAPDF

Needs to make few changes:

• source the LHAPDF environment variables as shown above;

• add the lhapdf-config file to the ../../Source/make_opts flags:

lhapdf=<prefix_absolute_path>/bin/lhapdf-config

Compile MadGraph with the usual commands, see HERE for more details.

make BACKEND=cuda OMPFLAGS= -f cudacpp.mk -j4

make -C ../../Source -j4

make BACKEND=cuda -j4

Running MadGraph and various issues

Fail 1: Could not find PDFsets directory, quitting

Due to MadGraph automatic check of the folder where the PDF sets are stored:

• looks for lib/PDFsets somewhere in the project directory;

• done in ../../Source/PDF/pdfwrap_lhapdf.f , around line 81, in the subroutine FINDPDFPATH() .

• not a robust check, only looking for at most 6 folders up from the current directory: if that folder is found alsewhere or it is

not called lib/PDFsets literally, then it is not found and the error is thrown;

• however check is not needed because path is exported in LHAPDF_DATA_PATH environment variable and LHAPDF will

always find the PDFs by itself.

Here is the snippet from ../../Source/PDF/pdfwrap_lhapdf.f :

 LHAPATH='lib/PDFsets'

INQUIRE(file=LHAPATH, EXIST=EXISTS)

IF(EXISTS)RETURN

 UPNAME='../../../../../../../'

DO I=1,6

 TEMPNAME2=PATH(:FINE2)//UPNAME(:3*I)//LHAPATH

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/

1 of 3

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-06-25_first_run_cuda_gg_ttgg_flamegraphs/index.html
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-06-25_first_run_cuda_gg_ttgg_flamegraphs/index.html

C LHAPath=up//LHAPath

INQUIRE(file=TEMPNAME2, EXIST=EXISTS)

IF(EXISTS)THEN

 LHAPATH = TEMPNAME2

RETURN

ENDIF

ENDDO

PRINT*,'Could not find PDFsets directory, quitting'

STOP

SOLUTION: skip this function by commenting its call out. Additionally, comment also the SETPDFPATH subroutine call for the

same reason: that subroutine will just set the path inside the LHAPDF object, which is not needed if the path is already set in

the environment variable.

Fail 2: PDLABELnn23xxx not found

This error occurs because, when using LHAPDF library, the PDFLABEL should be set to lhapdf : To be changed in:

• Cards/run_card.dat ;

• Source/run_card.inc .

Results

Process: .

Perform runs with very high number of events, so that the time-consuming part stands out more with respect to the GPU

initialization and setup. Use the following input.txt :

 262144 2 2 !Number of events and max and min iterations

 0.1 !Accuracy

 0 !Grid Adjustment 0=none, 2=adjust

 0 !Suppress Amplitude 1=yes

 0 !Helicity Sum/event 0=exact

 1

This will generate a total of 802816 events.

Additionally, modify the flamegraph script to not print the unknown , but to print the symbol name followed by the pointer

address, so that the names are unique and the various unknown blocks are not merged within each other.

Runs have been performed both with and without LHAPDF library (to compare the time saved by just using the C++

implementation instead of the native FORTRAN implementation in MadGraph), and both FORTRAN and CUDA backends (to

check that the number of calls to LHAPDF is consistent).

CUDA

• w/ LHAPDF

• w/o LHAPDF

FORTRAN

• w/ LHAPDF

• w/o LHAPDF

Timings as given by madevent

Average of 10.

 CUDA w/ LHAPDF CUDA w/o LHAPDF FORTRAN w/ LHAPDF FORTRAN w/o LHAPDF

FORTRAN Overhead 10.4023 17.4328 9.72641 16.7207

CUDA cpp MEs 2.15152 2.14973 408.712 407.811

Program total 12.55382 19.58253 418.43841 424.5317

Perf stat

• w/ LHAPDF

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/

2 of 3

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_cuda_with_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_cuda_with_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_cuda_no_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_cuda_no_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_fortran_with_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_fortran_with_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_fortran_no_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/flamegraph_gg_ttgg_fortran_no_lhapdf.htm
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/perf_stat_madevent_cuda_lhapdf.txt
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/perf_stat_madevent_cuda_lhapdf.txt

• w/o LHAPDF

Comparison with/without LHAPDF:

 12,774.34 msec task-clock # | 19,868.78 msec task-clock #

 292 context-switches # 2 | 344 context-switches # 1

 6 cpu-migrations # | 4 cpu-migrations #

 5,749 page-faults # 45 | 4,603 page-faults # 23

 38,738,465,319 cycles # | 60,358,592,417 cycles #

 79,843,864,971 instructions # | 154,662,612,426 instructions #

 15,611,188,417 branches # | 29,373,142,218 branches #

 124,217,959 branch-misses # | 115,744,389 branch-misses #

 13.347107965 seconds time elapsed | 19.919600172 seconds time elapsed

 12.045233000 seconds user | 19.086128000 seconds user

 0.650045000 seconds sys | 0.660382000 seconds sys

Comments

• With around 800k events, already with LHAPDF we see a speedup of 3x with respect to the native MadGraph

implementation.

• CUDA: pdg2pdf passes from the 40% with no LHAPDF to 9% with LHAPDF.

• CUDA: pdg2pdf is called 3 times (or, at least, we can record 3 records, which means it is called at least 3 times) in both

scenarios with/without LHAPDF, and it takes the same time. This means it is not probably been cached like Oliver once

suggested it should be.

• FORTRAN: in the case without LHAPDF, the pdg2pdf is called 3 times, each one with the same time length. Also not

cached as expected.

Next steps

• Profile the current FORTRAN release of MadGraph to understand whether the caching mechanism of the PDFs is working

(this could have been overlooked while implementing the CUDA version).

• Profile with AdaptivePerf to both have a new way of generating flamegraphs and to also have a chronological view of

the code.

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/

3 of 3

https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/perf_stat_madevent_cuda_no_lhapdf.txt
https://dmassaro.web.cern.ch/madgraph4gpu/LHAPDF/2024-07-09_run_with_cuda_and_lhapdf_gg_ttgg_flamegraphs/perf_stat_madevent_cuda_no_lhapdf.txt

