Status of PRs towards a release
(and updates on CMS/DY, timers/profiling, sampling...)

Andrea Valassi (CERN)

Madgraph on GPU development meeting, 27" August 2024
https://indico.cern.ch/event/1355159

(include also slides from private discussion with Olivier on August 20 — THANKS OLIVIER!)
(include also slides from the meeting with CMS on August 13 — THANKS JIN!)
(previous update at a proper Madgraph on GPU development meeting was on July 30)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_



https://indico.cern.ch/event/1355159

Overview - timeline

Previous update from me on 30 July

— Work on master — main pending issue: pp_tt012j xsec mismatch (~Fortran helicity filtering)
— Work on master_june24 — fix/reimplementation of channelid, pending review and merge

Interlude: presentation to CMS on 13 August (slides attached at the back)

— Look at various issues mentioned by CMS on 26 July (speed, xsec mismatch, bugs...)

— Detailed profiling of where the time is spent e.g. in DY+3 jets
» Thanks to a lot of infrastructure work: profiling of fortran and python, multi-backend gridpacks etc

Last week: discussion with Olivier on 20 August (slides also attached at the back)

— Almost 3-hour discussion, agree on priority order for merging PRs towards a release

Today: update on the work last week after meeting Olivier — and on the work ahead

— First: work needed before the release

— Also: other work (profiling etc) that | want to prepare results for CHEP
« And other work for later on...

CERN

\

w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024
N




(1) Towards the release

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_




Some ‘easy’ bits last week

As agreed with Olivier last week, do these two before anything else:

» Merged #966 — bug fix for CMS (nvcc installation without nvtx or curand)
— Let cudacpp.mk find out and act according, no env variables required

» Merged #960 — performance bug fix during helicity filtering in cudacpp
— Compute MEs only for ~16 events instead of ~16k events, if only 16 are needed!
— Bug identified during the analysis of CMS DY+3jet performance speed
» Thanks to the enhancements in gridpack profiling developed to understand CMS DY+3jet

In addition (not discussed with Olivier — | self approved to allow the CI to function):

* Merged #974 — upgrade Mac CI from gfortran-11 to gfortran-14
— Otherwise all Mac tests were failing on the CI (due to change by github in node config)

CERN

\w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_



https://github.com/madgraph5/madgraph4gpu/pull/966
https://github.com/madgraph5/madgraph4gpu/pull/960
https://github.com/madgraph5/madgraph4gpu/pull/974

Merging master and master_june24 M t . 24
« Olivier asked me to |o::e|r2‘r ::TN nl\:r:; ngr::ster and master_june24 as e r_J u ne : "
'IC:e;;?l?n;nth;::;Z:‘JLnesi?ve A fo"owing up on C h an n el I d
et e e e e three weeks ago I

g (master_june24)

* In the meantime, | am i
— I will come back to St

fixing these issues, so that we can move on...
ier when/if | have questions (I already asked some...)

« | confirm my opinion: PR #830 (Sep 2023 — Jun 2024) was insufficiently tested
— There are issues that could have been spotted with existing tests
— There are new features for which new specific tests should have been added
— There are usage assumptions for which new sanity checks should have been added
— Especially, the SIMD implementation in #830 was almost completely wrong
— Some parts of the code were modified and there was no need for that

» Therefore: | essentially reimplemented channelid from scratch in 2 weeks

 Olivier last week: first big priority (after the easy issues in the last slide) IS merging channelid

* PR #3882 by AV accepted by OM — changes requested by OM, implemented by AV
— Fixed tests failing in the new CI, resynced with latest master — Status AV: ready to merge

» My proposed way forward on this — Olivier is this OK? (I am waiting for a go-ahead)
— 1. OM review/accept mgs5amcnlo#121 into gpucpp (NB: forget about “gpucpp_june24”...)
— 2. AV merge mgS5amcnlo#121 into gpucpp (without squashing! can we disable this?...)
— 3. AV merge #882 (branch valassi/june24) into master_june24
— 4. AV close #830 (same branch valassi/june24) into master
— 5. AV create/merge PR master_june24 into master (ask OM for review, even if not needed)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_



https://github.com/madgraph5/madgraph4gpu/pull/882
https://github.com/mg5amcnlo/mg5amcnlo/pull/121
https://github.com/mg5amcnlo/mg5amcnlo/pull/121
https://github.com/madgraph5/madgraph4gpu/pull/882

Next: Fortran helicity filtering and pp_tt012]

pp_tt012j xsec mismatch — mirror processes

* (#872) Fortran and cudacpp cross sections differ for (gu_ttxgu within) pp_tt012]

« Analysis by AV (with contributions from OM and SR)

— This only happens for processes with ‘mirror processes’

- It happens for gu_ttxgu within pp_tt012j (mirror is ug_ttxgu — swap g/u from left/right beam protons)
— It does not happen for gu_ttxgu standalone (g from left beam, u from right beam)

« It also happens for uux_ttx within pp_tt (now added as a much simpler test)

— Code signatures: MIRRORPROCS=true in Fortran, nprocesses=2 in cudacpp
= These must be kept, else the cross section is a factor two off (OM patch #754 August 2023)
« Note: nprocesses=2 is only used for static asserts in cudacpp, there is no array(2) for this...

— Cross sections are not bit-by-bit the same because different numbers of events are processed|
« Fortran computes helicities twice (once per mirror), cudacpp computes helicities once (overall)
« Specifically: Fortran helicity recomputation leads to one more RESET_CUMULATIVE_VARIABLE call

* Fix by AV (under review by OM) in PR #935

— Add one extra RESET_CUMULATIVE_VARIABLE call during cudacpp helicity computation
« IMO, huge benefit (fortran and cudacpp xsecs agree bit-by-bit) for no cost (process few events more)
« IMO, these bit-by-bit tests are the main reason we have a reasonably solid code now

30 July 2024 5

« AV initial proposal in PR #935 (30 July): add one RESET_CUMULATIVE_VARIABLE
« OM counterproposal in PR #955: remove the second helicity filtering in Fortran!

— Requires merging gpucpp_goodhel into gpucpp and then fixing cudacpp accordingly

— En passant, OM also made LIMHEL a runcard parameter — cudacpp integration needed
* Olivier last week: second big priority (after channelid and june24)

Status AV: agree on the direction, will look at it this week (did not have time yet)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024
N



https://github.com/madgraph5/madgraph4gpu/pull/935
https://github.com/madgraph5/madgraph4gpu/pull/955

Other issues towards the release

(incomplete list, random order)

Before the release:
» Packaging of cudacpp as a git submodule will be one of the priorities
Understand and fix FPEs in DY +jets reported by CMS #942

Check that results are the same with and without vector interfaces #678 (OM)
— Understand xsec variation with vector_size (32 vs 16384) in DY+3jets #959

(Check that parameter cards are handled correctly #660)

Are the following needed before the release?

» Understand xsec mismatch (Fortran vs cudacpp) in DY+4jets reported by CMS #944
« Additional “3'9” Cl by OM — PR #865 (still under review by AV, sorry for the delay)
 Sort out various multi-GPU issues from today’s meeting with CMS (will open tickets)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/942
https://github.com/madgraph5/madgraph4gpu/issues/678
https://github.com/madgraph5/madgraph4gpu/issues/959
https://github.com/madgraph5/madgraph4gpu/issues/660
https://github.com/madgraph5/madgraph4gpu/issues/944
https://github.com/madgraph5/madgraph4gpu/issues/865

(2) For CHEP results — profiling
(follow-up of work done for / with CMS)

SIMD/GPU speedups — preliminary work

+ To follow up on the CMS DY+3jet speed issue | did a lot of (general) preliminary work
— Condensed summary below — NB these are all WIP PRs (not yet reviewed or merged...)

* (1) Multi-backend gridpacks
— Create gridpacks that contain Fortran, CUDA and all SIMD builds; the madevent executable Wl P: 948b
symlink is updated when running the gridpack (issue #945, WIP PR #948)

* (2) Profiling infrastructure for python/bash orchestrator of many madevent processes
— Special gridpack creation in private “tlau/gridpacks” scripts; modified python scripts keep, WIP: 948a
parse and aggregate individual madevent logs (issue #957, WIP PR #948)

* (3) Performance bug fix: compute MEs for only ~16 events during helicity filtering
—Only 16 events were used in SIMD to filter good helicities, but MEs were computed for 16k .
events; now fixed with “compute good helicities only” flag (issue #958, WIP PR #960) Me rQEd ) 960
— Note1: this improves SIMD runs with vector_size=16384; less relevant if vector_size=32
— Note2 (to do): maybe a similar bug is lurking for CUDA too, but is probably less relevant?

* (4) More fine-grained profiling of fortran/cudacpp components in a madevent process
— Progressively identified all major scalar bottlenecks and added individual timers/counters for Wl P . 962 b
all of them (WIP PR #962, generic; WIP PR #946, CMS DY+jets) "
— Note: this also benefits from earlier profiling flamegraphs by Daniele (thanks!) Wl P . 962 a

DYsiets for CMS

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_




962a. Low-overhead (rdtsc-based) timers

with subtraction of the estimated overhead

Changes in timer.h (essentially a new file, but keep the name for simplicity):
— Rename old timer as ChronoTimer, new API based on ticks, new granularity
— Add a new rdtsc-based timer, based on reading TSC ticks (faster than chrono) #972

Changes in timermap.h (check.exe profiling): adapt to new timer.h, default is rdtsc

Changes in counters.cc (madevent profiling): adapt to new timer.h, default is rdtcs
— New function names (remove reference to smatrix, use this anywhere) and API
— Added a way to estimate and subtract the start/stop timer overhead, will become default

(#962) Status: WIP PR (“prof”) exists but also mixes other things, will split it in two:
— One PR only for the new rdtcs timers/counters/timermap and their usage in other classes
— Another PR (next slide) for more detailed profiling of madevent components

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/972
https://github.com/madgraph5/madgraph4gpu/issues/962

962a. Low-overhead (rdtsc-based) timers
with subtraction of the estimated overhead

https://github.com/madgraph5/madgraph4qgpu/pull/962#issuecomment-2307332171

(DY+3j subprocess with 16k events — profiles include a test timer for sample_get_x which is called 14M times)

CUDACPP_RUNTIME_USECHROMOTIMERS=1

Sbuild.cuda_d_inl@_hrd@/madevent_cuda < stmp/savalassi/sinput_ggtt_xl_cudacpp
[COUNTERS] #*#%* USING STD::CHRONO TIMERS (do not remave timer overhead) #%%
[COUNTERS] PROGRAM TOTAL 5.3144=

Sbhuild.cuda_d_inl@_hrd@/madevent_cuda < Jtmp/iavalassi/input_ggtt_xl_cudacpp

[COUNTERS] *** USING RDTSC-BASED TIMERS (do not remove timer owverhead) *#%
[COUNTERS] PROGRAM TOTAL 4.4766s

CUDACPP_RUNTIME_REMOVECOUMTEROWERHEAD=1 %
.Sbuild. cuda_d_inl®_hrd@/madevent_cuda < /tmp/avalassi/input_ggtt_xl_cudacpp

INFO: COUNTERS overhead : 8.8338s for 1M start/stop cycles
[COUNTERS] PROGRAM TOTAL+COUNTEROVERHEAD 4, 8244=
[COUNTERS] PROGRAM COUNTERCVERHEAD 8.8985s

[COUNTERS] *#* USING RDTSC-BASED TIMERS (remove timer owverhead) #*%
[COUNTERS] PROGRAM TOTAL : 3.9338s

CUDACPP_RUNTIME_REMOWECOUNTERCVERHEAD=1 CUDACPP_RUNTIME_DISABLECALLTIMERS=1 %
Sbuild.cuda_d_inl@_hrd@/madevent_cuda < Stmpsavalassi/sinput_ggtt_xl_cudacpp

INFOQ: COUNTERS owverhead : 8.8333s fTor 1M start/stop cyvcles
[COUNTERS] PROGRAM TOTAL+COUNTEROVERHEAD 4.1897=
[COUNTERS] PROGRAM COUNTEROVERHEAD B8.3338s

[COUNTERS] *##* USING RDTSC-BASED TIMERS (remove timer overhead) *+*#
[COUNTERS] PROGRAM TOTAL 3.8567s

CERN

\

w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)
N

Original chrono timers
Program total: 5.3s

New rdtsc timers
Program total: 4.5s

New rdtsc timers
Subtract the estimated overhead
Program total: 3.9s

New rdtsc timers
Subtract the estimated overhead
Disable the 14M+ test timer calls
Program total: 3.9s

(i.e. overhead subtraction is good enough)

27 August 2024

10



https://github.com/madgraph5/madgraph4gpu/pull/962#issuecomment-2307332171

962b. Fine-grained madevent Fortran profiling

CUDACPP_RUHTIHE REHOVECOUNTEROVERHEAD=1 %
fbuild.cuda_d_inl0_hrd0/madevent_cuda < ftmp/favalassi/input_ggtt_x1_cudacpp

IHNFO: COUHTERS overhead : 0.0338s for 1H start/stop cycles
[COUNTERS] PROGRAHM TOTAL+COUHTEROVERHEAD : 4.8244s
[COUNTERS] PROGRAHM COUHNTEROVERHEAD : 0.8905s
[COUNTERS]riii_HEIHG_EDIE£;BEEED_IIHEBE.i:ﬂmﬂﬂﬁ.ﬁimﬁ:.ﬂﬂﬂ:hﬂﬂfJ A
[ COUNTERS ]| PROGRAH TOTAL : 3.9339s
[COUNTERS] Fortran Other {( 0O : 0, 2954s

r s 1

VI .
[COUNTERS] ige (170} { 1 0,067
[COUNTERS ]| Fortran PhaseSpaceSampl in { 3 : 2.1332s)| for 1087437 events
[COUNTERS] Fortran 5 : . 5 for 312768 events

[COUNTERS] Fortran UpdateScaleCouplings { 5 0.1688s for 16384 ewvents
[COUNTERS] Fortran Reweight { 6 ) : 0.06507s for 16384 events
[COUNTERS] Fortran Unweight (LHE-I/0) { 1) : 0.0695s5 for 16384 events
[COUNTERS] Fortran SamplePutPoint {( 8 : 0.0924s for 1087437 events
[COUNTERS] CudacCpp Initialise ({ 11 ) : 0.4692s

[ COUNTERS] CudacCpp Finalise { 12 ) : 0.0263s

[COUNTERS] CudaCpp HE=s { 19 ) : 0.0357s for 16384 events
[COUNTERS] TEST SampleGetX { 21 ) : 1.8723s for 14136681 events
[COUNTERS] OVERALL HOH-MES ( 31 ) : 3.8982s

[COUNTERS] OVERALL HMEsS {( 32 ) : 0.0357s for 16384 ewvents

En passant, note:

- phase space sampling is
75% of total with CUDA MEs
(DY+3j subproc gux_taptamggux)

» See details in CMS slides two weeks ago (tuned until “Fortran Other” is small)

» (#962) Status: WIP PR (“prof”) exists but will strip this off to a separate PR

 To do as discussed with Olivier:

— add the profiling sections in upstream mg5amcnlo Fortran and protect them with #ifdef's
—i.e. disable fine-grained profiling unless users choose to enable profiling in the runcards

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

~Z_

27 August 2024 11



https://github.com/madgraph5/madgraph4gpu/issues/962

\

CE/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

pp_dy3j.mad//cpp512z/output.txt

GridrPackCmd.launch]

[

[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent
[madevent

COUNTERS]
COUNTERS]
COUNTERS]
COUNTERS]
COUNTERS ]
COUNTERS ]
COUNTERS]
COUNTERS]
COUNTERS]
COUNTERS]
COUNTERS]
COUNTERS ]
COUNTERS ]
COUNTERS ]

GRIDPCK
PROGRAM

TOTAL 176.8891 seconds
TOTAL 172.637

Fortran
Fortran

Other 6.5768
Initialise(I/0) 4.486

Fortran

Random2Momenta 93.2967

Fortran
Fortran
Fortran
Fortran
Fortran
CudaCpp
CudaCpp

PDFs 8.2998
UpdateScaleCouplings 7.2827
Reweight 3.7045
Unweight(LHE-I/0) 4.8719
SamplePutPoint 8.2892
Initialise ©.3619

Finalise ©.0221

CudaCpp

MEs 35.4557

OVERALL
OVERALL

MON-MEs 137,181
MEs 35.4557

948a. Aggregated madevent python profiling

En passant, note:

- phase space sampling is
>50% of total with CUDA MEs
(DY+3j overall)

- time spent in python+bash is
negligible with respect to Fortran

» See detalils in CMS slides two weeks ago (keep, parse, aggregate madevent logs)

» (#948) Status: WIP PR (“grid”) exists but mixes other things, might split it in two:
— (948a) aggregated madevent profiling; (948b, next slide) multi-backend gridpacks

* To do as discussed with Olivier:
— add the profiling commands in upstream mg5amcnlo python and make them optional

—i.e. disable fine-grained profiling unless users choose to enable profiling in the runcards
* (use the same setting as for fine-grained madevent profiling 962b)

27 August 2024 12

~Z_


https://github.com/madgraph5/madgraph4gpu/issues/948

948b. Multi-backend gridpacks

pp_dy3j . mad//f fortranfoutput. txt

[GridPackimd. laumch] GRIDPCK TOTAL 447.7169 seconds
[madevent COUNTERS] PROGRAM TOTAL 443.48
pp_dy3j.mad//cppnonefoutput . txt

[GridPackCimd. launch] GRIDPCKE TOTAL 448.1598 seconds
[madewvent COUNTERS] PROGRAM TOTAL 443.898

pp_dy3dj . mad/fcppssedfoutput . txt En passant, note:
[GridPacktmd. launch] GRIDPCK TOTAL 295.7847 seconds phase space Sampling is
[madewvent COUHNTERS] PROGRAM TOTAL 291.523 0 .

pp__dy3] .mad//cppavk?/output . txt >50% of total with CUDA MEs

[GridPackCimd. launch] GRIDPCE TOTAL 204.7001 seconds
[madevent COUNTERS] PROGRAHM TOTAL 200.453 .
pp_dy3dj . mad/fcppbhl2y/foutput. txt (DY+31 Overa”)
[GridPackCmd. launch] GRIDPCK TOTAL 201.0406 seconds
[madevent COUNTERS] PROGRAM TOTAL 196,745

pr_dy3dj . mad/fepphl2zfoutput . txt L
[GridPackcmd. launch] GRIDPCK TOTAL 176.8891 seconds but could also do this in CUDA,
[madevent COUNTERS] PROGRAM TOTAL 172.637 see the next Sllde

« See CMS slides two weeks ago (pre-build all backends, joptimize Vegas in Fortran

» (#948) Status: WIP PR (“grid”) exists but mixes other things, might split it in two:
—(948a, previous slide) aggregated madevent profiling; (948b) multi-backend gridpacks

* To do as discussed with Olivier:
— (keep current default: multi-backend disabled unless users enable it in the runcards)

— clarify how symlinks are re-created for a new backend after untarring the gridpack
» or maybe add one backend parameter to the run.sh script?
» or maybe add a madevent script that switches between backends, instead of a symlinks? #693
« (bottom line: choosing a backend to run a gridpack is a run-time choice, not a build-time choice...)

CERN

\w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 13

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/948
https://github.com/madgraph5/madgraph4gpu/issues/693

948b. Multi-backend gridpacks... PS!

&/ Improvements observed throughout the whole processes - x2 for CPP / x3.5 for CUDA for TT+2j
&/ Expecting huge improvements in TT+3j/0123j!

o/ Only 6 madevents possible to be submitted for TT+3j/0123j - gg —ttxggg takes ~ 6GB GPU memory

o/ Additional test with 12 madevents using H100 (~ 96 GB)

7 Super-fast gridpack production viable if multi-gpu supports available! (H100 x 4 ~ 384 GB)

o/ Madevents in TT+3j possesses 2~6 GB for GPU memory — could it be allocated dynamically?
e.g. Check the remaining memory in GPU and submit the madevent...

JIN CHOI

o

e o Events

Noamter of Evets

CMS - CMS -
| GRIDPACK PRODUCTION b i 4 ~——/\| EVENT GENERATION b v 4
=
@ TThar ® TTbar
nb_core =16 nb_core =16 nb_core =16 nb_core =12
FORTRAN CcPP CUDA CUDA-H100 TT+0j TT+1j TT+2j
TT+0j Sm 47s 7m 15s ama1s [ P kg e rF
Rk . Ban P
o Lmees | S0 Lmem | g [ mem |
TT+1j 11m 8s 10m 43s 7m7s = H f |
£ i 5 bt
TT+2] 74m 52s 38m 25s 21m 47s e “"[ «.'
i3 2L SE |
TT+3] > 119h...(19%) > 19h (6%) 8h11m 4h53m - ”l A o]
o " mof L
TT+0123] > 118h...(20%) 31h 6m 8h 24m 4h 52s W R T X g LI " 0

e bt
=
e o Eve

« x4 improvement in CUDA. SOME improvement viable for AVX2 vectorization... but not large.
&/ Improve increases with final state multiplicity...Will be checked with TT+3j

JIN CHOI

« See Jin’s slides at the CMS meeting earlier today (https://indico.cern.ch/event/1373475)
— Event generation in cpp/fortran not tested yet because gridpack creation is not done yet...

» Possible solution? (for CMS tests before CHEP, not for physics production yet...)
— Create multi-backend gridpacks using CUDA (i.e. Vegas optimization using CUDA MES)

— Most of the O(100-1000) hours in fortran/cpp gridpack creation are Vegas optimization
» The software builds are also slow but not the bottleneck: expect to create gridpacks in O(10) hours

— Question for OM: increase priority and merge this PR soon so that CMS can test this?

CERN

\

~Z_

w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

27 August 2024

14



https://indico.cern.ch/event/1373475

(3) For CHEP or beyond — sampling improvements
(follow-up of work done for CMS)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 15

~Z_




Improving phase space sampling?

................................

& FORTRAN:

X_TO_F_AR
[ FORTRAN: FORTRAN: >
NTUPLE (ranmAR) NTUPLE (ranmMAR)
- e @ NB the name ntuple originally
RANMAR St ackel 2 S b el I referred to a quasi-MC function in

s...'.‘,’i‘;f‘a"ﬁ X e htuple.f, but this is no longer used!

] SAMPLE_GET_X
Wﬂ’”l"ll‘:[‘ 1] ve-mapper

Vogens grid (1] 68 [6.1] re-rapper?

([ atommparimions | [ amommmwernions || inpyple is now just a ranmar calll)

FORTRAN:
GEN_MOM
mappart

randem sumber (0.7 10 mossonta,
 §
MOMENTA FOR ONE EVENT ]
t

MATRIX ELEMENTS

* What goes inside phase space sampling (x_to f arg) is more or less the above...
—one X_to f arg (calling one gen_mom internally) for each event

— which internally calls one sample get x (calling ranmar-based ntuple) for each patrticle
» sample_get_x is the bottleneck (around or more than 50% of phase space sampling for DY+3j?)

* Largely speaking, two (or three) strategies forward
— low hanging fruits: trivial improvements are possible in sample get x
— vectorization and GPU port of the whole phase space sampling chain
— (but does Madnis completely replace the sample_get x internal code?)

Andrea Valassi — CMS DY +jets, timers/profiling, first sampling improvements 20 August 2024

* Next three slides:
—sample_get_x profiling numbers
— picking up some low hanging fruits
— some thoughts on vectorization

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 16

~Z_




o Profiling sampling:

X_TO_F_ARG \

oy || NTUPLE e sample _get X

random number generator random number erator
1 !
[ random number in [0,1] J [ random numberinlh\] J .
One DY+3j subprocess gux_taptamggux
FORTRAN: FORTRAN: \ -_
SAMPLE_GET_X SAMPLE_GET X .
Vogas rid 1011 5T 1 e st vegas ra o5 w11 e raere | | « Sampling (x_to_f arg) ~ 75% of total
¥ ¥ o - T
=== 'u rndom b (011 — Within that: sample_get_x ~ 50% of total
FORTRAN ) « Within that: xbin takes a large fraction
GEN_MO
random number [0,1] to momenty mapper?
1 \
[ MOMENTA FOR ONE Evé(r ]
\
LOOP
\ CUDACPP_RUNTIME REHMOVEC EROVERHEAD=1 %
Jbhuild.cuda d inl 0 hrd0O devent cuda < ftmpfawvalassi/input ggtt_x1_cudacpp
[ LIS (LS S \ INFO: COUNTERS owerhead : 0.0338s for 1H start,fstop cycles
[COUNTERS] PROGRAM TOTAL+C EROVERHEAD 4.8244s5
[COUNTERS] PROGRAM COUNTEROVERHEAD : 0.8905s

[COUNTERS] %

) ok ok

Fortran i : . for 1087437 ewvents
ERS] Fortran : . for 312768 events

[CO ERS] Fortran UpdateScaleCoupl ings { 5 0.1688s for 16384 events
] . [COUNTERS] Fortran Reweight { 6) 0.0607s for 16384 events
Time estimates from rdtcs, [co RS] Fortran Umweight (LHE-I/0) ( 7)) 0.0695s for 16384 events
. [COUNTERS] Fortran SamplePutPoint { 8) 0.0924s for 1087437 ewvents
after subtracting the [COUNTERS] CudacCpp Initialise ( 11 ) 0.4692s
i i [COUNTERS Finalise { 12 ) 0.
estimated tlm(_er overhead L ounTER ; : for 16384 ovents
(should be reliable enough?...) | [counTERS for 14136681 events
[COUHTERS] : ToUTTs
[COUNTERS] OVERALL MES { 32 ) : 0.035?5 for 16384 events

27 August 2024 17




Low hanging fruits in sample_get x

* |dentified and flxed a couple of simple posmble changes L O W h an g I n g

. H L}
non-controversial(?) changes f r I )
+ (1) xbin is very often (not always) called with the same arguments, e.g. 0 or 1: cache it! =

2) xbin is sometimes called in dead or repeated code, avoid those calls

eeded?
strange)

* (3) expensive xbln calls take place in some internal checks to issue warnings: are these
— | have the impression this code is not completely functional an: .g. warning counters lool

. will give etalls another ime

—Ssome nice gains rom ana especially

* Are other improvements possible in the xbin function? % Status: WIP PR eXIStS’
— | had no time to look at this in more detail than caching it or avoiding it... to be rediscussed W|th O”Vier

» internals look reasonable, there is a binary tree search... but maybe can be improved?

< Andrea Valassi — CMS DY +jets, timers/profiling, first sampling improvements 20 August 2024
7

For the cuda backend is now, skipping xbhin checks #9686
Phase space sampling in dy+3j has decreased from 78s to 5h3s (down by 30%) 946b (issue 968)

u. 1auichn | RIUEUR TUT Al 130, 11449 « ) ”» ’?
> [madevent COUNTERS] PROGRAM TOTAL 130.8140s More controversial” changes
> [madevent COUNTERS] Fortran PhaseSpaceSampl ing L_53.0338s|for 44652395 events .. g ’
> ... Save an additional 30%
> [madewent COUNTERS] CudaCpp HEs 35.4908s5 for 1769472 events
> [madewvent COUHNTERS] OVERALL HON-HEsS 95.3232s
> [madewvent COUNTERS] OVERALL HMEs 35.4908s for 1769472 ewvents
For the cuda backend was, including xbin checks but including trivial improvements #969 .

Phase space sampling in dy+3j has decreased from 93s to T8s (down by 15h%) 9463. (ISSUG 969)

< [GridPackCmd. launc GRIDPCK TOTAL . “ Al

< [madevent COUNTERS] PROGRAM TOTAL B 60 Non-controversial” changes?
< [madewvent COUNTERS Fortran PhaseSpaceSamplin 78.1023s |for 44652395 ewvents

: [ : paceSanpling Save 15%

< [madevent COUNTERS] CudaCpp HEs 35.4320s for 1769472 ewvents

< [madewent COUNTERS] OVERALL HOHN-HMES 120.4290s

< [madewvent COUNTERS] OVERALL HES 35.43205 for 1769472 events

For the cuda backend was in 2e59eca00, without triwvial improwvements

< [GridPackCmd.launch] GRIDPCK TOTAL 176.8891

< [madewvent COUNTERS] PROGRAM TOTAL i 0

< [madewvent COUNTERS] Fortran Random?Homenta for 44651014 ewents
< ...

< [madewvent COUNTERS] cudaCpp HEs 35.45575 for 1769472 events
< [madewvent COUNTERS] OVERALL HON-MEs 137.1806s

< [madewvent COUNTERS] OVERALL HMEs 35.4557s for 1769472 events

https://github.com/valassi/madgraph4gpu/commit/348664c66d90f47d1d9e6fd72d7dd7f4b0fa7cff

27 August 2024 18


https://github.com/valassi/madgraph4gpu/commit/348664c66d90f47d1d9e6fd72d7dd7f4b0fa7cff
https://github.com/madgraph5/madgraph4gpu/pull/946

Vectorizing phase space sampling?

or Madnis?
i i il
W FORTRAN: * FORTRAN: ¥ FORTRAN:
X_TO_F_ARG X_TO_F_ARG X_TO_F_ARG
FORTRAN: FORTRAN: FORTRAN:
NTUPLE (RANMAR) INTUPLE (RaNMAR) INTUPLE (ranmMAR) WRAPPER?
o s genarstor random smber guaertor e mber oo frectar
E ¥ I
| random number in [011 1 [ random number in [0,11 ] [ random numbes in [0,1] - pre-complte a vectort | [ random number in [0,1] - pre-compute a vectart ]
'y "
FORTRAN: FORTRAN:
SAMPLE_GET_X SAMPLE_GET_X
Vo grkd 01111 - srappert Vo geid 6,41 T A1 et
3 1
[ random nurgber in 0,1] } [ random number in [0,1] l rangom numbe i [0,1) - pre-compute  vectart ] [ ranglom rumber in [0,1] - pre-compute a vectort ]
¥ 3 + ¥ 'y
FORTRAN: FORTRAN: G:;:W'-:SM
o SN MOM o GENMOM NN,
3 - 1 T
| MOMENTA FOR ONE EVENT ] [ MOMENTA FOR ONE EVENT ] [ MOMENTA FOR ONE EVENT ]
| | . ] ¥ Loor LooP

[‘ MOMENTA FOR MANY EVENTS ] MOMENTA FOR MANY EVENTS l [ e et J

* | had a first quick look at possibly vectorizing sample_get x
—these are relatively short functions with simple operations, it is not rocket science
» API: could start by preparing baskets and then looping internally as Olivier did for MEs
—the main problem | see is that there are many COMMON'’s making this stateful
« can the hidden inputs/outputs requiring these COMMON's be avoided?
= or can these hidden inputs/outputs be moved outside the event/particle loop?

* IMO: should clarify two things (OM) before doing more work in this direction
— 1. is there any hope of removing the need for Fortran commons?
« especially those that seem to analyse each individual event and keep a state somewhere

— 2. would sample_get_x continue to exist when Madnis is introduced?
« otherwise, gen_mom ([0,1] to momenta) may be more relevant than sample_get x ([0,1] to [0,1])

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 19

~Z_




CMS DY+jets, timers/profiling,
phase space sampling improvements

Andrea Valassi (CERN)

Madgraph on GPU development (discussion with Olivier), 20t August 2024

(Quick update on the work last week since the CMS meeting — CMS slides are included at the back)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

~Z_

20




Followup of SIMD/GPU speedups in DY+3j (2)

* Results of fine-grained madevent profiling
—The profile is VERY different from that of a simpler gg to tt!
— Observation 1 (not shown here): the overall non-ME contribution is identical in all backends
— Observation 2: the scalar bottleneck is phase space sampling! (~50% for AVX512)
— Observation 3: PDFs scalar contribution is important but not dominant! (~6% for AVX512)

Fofn dnveritleaion 0% | OV erview.
o e follow-up on the meeting
with CMS last week

pp_dy3j.mad//cpp512z/output. txt
[GridPackCmd.launch] GRIDPCK TOTAL 176.8891 seconds

[madevent COUNTERS] PROGRAM TOTAL 172.637

[madevent COUNTERS] Fortran Other 6.5768

[madevent COUNTERS] Fortran Initialise(T/0) 4.486
[madevent COUNTERS] | Fortran Random2Momenta 93.2907
[madevent COUNTERS] Fortran PDFs 8.2998

[madevent COUNTERS] Fortran UpdateScaleCouplings 7.2827
[madevent COUNTERS] Fortran Reweight 3.7045

[madevent COUNTERS] Fortran Unweight(LHE-I/0) 4.8719
[madevent COUNTERS] Fortran SamplePutPoint 8.2892
[madevent COUNTERS] CudaCpp Initialise 0.3619

[madevent COUNTERS] CudaCpp Finalise 0.0221 Fortran reweight [in dsig1] (5%):
[madevent counTers] [cudacpp Mes 35.4557 ] internally, more PDFs and scales
[madevent COUNTERS] OVERALL NON-MEs 137.181 (move fo the two above insicad?)
[madevent COUNTERS] OVERALL MES 35.4557

Fortran PDFs [in dsig1] (9%)
PDF interpolation

determine coupling scale

Fortran update scales [in dsig1] (1%) ‘

Fortran unweight (15%):
VO (write LHE files)

CUDACPRP initialization (0%):
initialize Bridge

CUDACPP finalization (0%):
reset Bridge, clean up Fortran sample_put_point (27%):

/O (update Vegas grids?)

13 August 2024 11

* Phase space sampling is the bottleneck in DY+3j for CUDA — see next slides
— Had a first quick look at the internals (some trivial improvements, possible strategies...)
— This required more profiling, which has an overhead: developed lower overhead timers

« Other ‘minor’ new issues
— New issue #965 in CMS user support, nvcc installed without nvtx: PR #966 ready/approved
—New issue #971 in Mac ClI, Fortran not installed, pending (github changed its node config?)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 21
NS



https://github.com/madgraph5/madgraph4gpu/issues/965
https://github.com/madgraph5/madgraph4gpu/issues/966
https://github.com/madgraph5/madgraph4gpu/issues/971

Low-overhead (rdtsc-based) timers

» Timers based on std:.chrono have some overhead
— (Even if now much less than we had in the past due to O/S issues #116)
— This overhead is especially obvious with very heavy profiling (e.g. for sample_get x)

* | developed new timers based on rdtsc #972 (ready in PR #962)
— Individual timers in code instrumentation just read TSC ticks, which is very fast

— The calibration from TSC ticks to time is only done once at the end
* All relevant updates completed in timermap.h (for check sa.cc) and counters.cc (for fortran code)

— Chrono based timers also have a new API and internal implementation (nanosec ticks)
— Main file is still called timer.h but is essentially a brand new timing machinery

« See this commit in PR #970 for CMS DY +3jet phase space sampling studies

[COUNTERS] *#** USING STD::CHROMO TIMERS #*** [COUNTERS] *#** USING RDTSC-BASED TIMERS ***

[COUNTERS] PROGRAM TOTAL : 4.7%38s [COUNTERS] PROGRAM TOTAL : 3.9808s

[COUNTERS] Fortran Other { @) : @.1781s [COUNTERS] Fortran Other { @) : B.1248s

[COUNTERS] Fortran Initialise(I/0) ( 1) : 8.9672s COUNTERS] Fortran Initialise(I/0) ( 1) : 8.9676s

[COUNTERS] Fortran Random2Momenta { 3): 3.5324s for 1170183 events 1 COUNTERS] Fortran Random2Momenta ( 3) : 2.7899s ffor 1178183 events
[COUNTERS] Fortran PDFs { 4): 9.1024s for 49152 events [COUNTERS] Fortran PDFs { 4): 0.1042s for 49152 events
[COUNTERS] Fortran UpdateScaleCouplings ( 5): ©.1323s for 16384 events [COUNTERS] Fortran UpdateScaleCouplings ( 5): 8.1327s for 16384 events
[COUNTERS] Fortran Reweight ( 6): 8.9525s for 16384 events [COUNTERS] Fortran Reweight ( 6): 8.9504s for 16384 events
[COUNTERS] Fortran Unweight(LHE-I/0) ( 7): 8.9647s for 16384 events [COUNTERS] Fortran Unweight(LHE-I/0) ( 7)) : 8.8652s for 16384 events
[COUNTERS] Fortran SamplePutPoint { 8): ©.1415s for 1170183 events [COUNTERS] Fortran SamplePutPoint { 8) : 0.1165s for 1170103 events
[COUNTERS] CudaCpp Tnitialise (11 ) @.46955 [COUNTERS] CudaCpp Tnitialise (11 ) : B.46855

[COUNTERS] CudaCpp Finalise (12) 8.9258s [COUNTERS] CudaCpp Finalise (12 ) : 8.9261s

[COUNTERS] CudaCpp MEs (19 ) : 9.0346s for 16384 events [COUNTERS] CudaCpp MEs (19 ) : 0.0349s for 16384 events
[COUNTERS] TEST  SampleGetX (21) : 2.0375s for 15211387 events [CI[COUNTERST TEST __SampleGetX (21 ) - 166635 Jfor 15211307 events
[COUNTERS] OVERALL NON-MEs (31) : 4.7584s [COUNTERS] OVERALL NON-MEs (31) : 3.9459s

[COUNTERS] OVERALL MEs (32): 8.9346s for 16384 events [COUNTERS] OVERALL MEs (32): 8.8349s for 16384 events

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 22

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/116
https://github.com/madgraph5/madgraph4gpu/issues/972
https://github.com/madgraph5/madgraph4gpu/issues/962
https://github.com/madgraph5/madgraph4gpu/pull/970/commits/c863d69aee13f89f3f09d3da5e4aa005924ee822

Improving phase space sampling?

iﬁ FORTRAN:
X_TO_F_AR:
FORTRAN: FORTRAN:
NIEDEI;“E hE'RANMAR) NTUPLE (RANMAR)
p— ber generator h  "ndom number generator L.
; anmm: } [ mndnmnu:berln [0,1] J random number in [0,1] NB the name ntuple Orlglna”y
RS | ¥ } referred to a quasi-MC function in
[;‘ ‘i . scse " . )
;;} ronta: | A———— SAMPLE GET X SAMPLE GET X htuple.f, but this is no longer used!
;i} MADTVENT U Vegas grid [0,1] zi 10,11 re-mapper? Vegas grid [0,1] ni 10,11 re-mapper?
i [ 4
:" random num| in random number in H H
| —— S [ ontommeprintons | [ ememmebermina | (ntuple is now just a ranmar calll)
i FORTRAN: FORTRAN:
MaTROA GEN_MOM
gl random number [0,1] to momenta mapper?
MATRIX ELEMENTS MATRIX ELEMENTS i

[ 'MOMENTA FOR ONE EVENT ]

J Loor

{ MOMENTA FOR MANY EVENTS ]

» What goes inside phase space sampling (x_to f arg) is more or less the above...
—one x_to_f arg (calling one gen_mom internally) for each event

— which internally calls one sample get x (calling ranmar-based ntuple) for each particle
» sample_get x is the bottleneck (around or more than 50% of phase space sampling for DY +3j?)

» Largely speaking, two (or three) strategies forward
— low hanging fruits: trivial improvements are possible in sample_get x
— vectorization and GPU port of the whole phase space sampling chain
— (but does Madnis completely replace the sample_get x internal code?)

CERN

\w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 23

~Z_




Low hanging fruits in sample_get_ x

* |dentified and fixed a couple of simple possible changes
— the xbin() function called by sample_get_x is one of the bottlenecks: avoid it!
— non-controversial(?) changes
* (1) xbin is very often (not always) called with the same arguments, e.g. 0 or 1: cache it!
* (2) xbin is sometimes called in dead or repeated code, avoid those calls
— more controversial(?) changes

* (3) expensive xbin calls take place in some internal checks to issue warnings: are these needed?
— | have the impression this code is not completely functional anyway... (e.g. warning counters look strange)

— some nice gains from (1) and especially (3)... will give details another time

« Are other improvements possible in the xbin function?

— | had no time to look at this in more detail than caching it or avoiding it...
* internals look reasonable, there is a binary tree search... but maybe can be improved?
* maybe even vectorized, but this clearly includes heavy branching... lockstep seems difficult

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 24

~Z_




Vectorizing phase space sampling?

or Madnis?
FORTRAN: FORTRAN: ¥ FORTRAN:
X_TO_F_ARG X_TO_F_ARG X_TO_F_ARG

FORTRAN: FORTRAN: FORTRAN:

NTUPLE (RANMAR) NTUPLE (RANMAR) NTUPLE (ranmar) WRAPPER?

random num?er generator random num?er generator random number genu.-mr (vectar ian)
+ + + f v
[ random nun:ber in [0,1] J [ random nurrllber in[0,1] J [ random ber in [0,1] — pre-c 7’ a vector! J [ random number in [0,1] .— pre-compute a vector! ]

FORTRAN: L FORTRAN:

SAMPLE_GET_X SAMPLE_GET_X

Vegas grid [0,1] 0: [0,1] re-mapper? Vegas grid [0,1] Uf: [0,1] re-mapper?
+

E
[ random nlmllber in[0,1] ] [ random number in [0,1] ] [ random number in [0,1] — pre-compute a vector! } [ ranldom number in [0,1] — pre-compute a vector! ]
L } L4 § v $
FORTRAN: FORTRAN: FORTRAN:
GEN_MOM GEN_MOM GEN_MOM
random number [0,1] to momenta mapper? remdou misdrer FU/L] B mox r? (scalar) random number [0,1] to n:wmvh mapper? (scalar)
i i ¥
[ MOMENTA FOR ONE EVENT J [ MOMENTA FOR ONE EVENT J [ 'MOMENTA FOR ONE EVENT ]
' Loop i LooP =
[ MOMENTA FOR MANY EVENTS } [ MOMENTA FOR MANY EVENTS } [ L RN AL £ ]

* | had a first quick look at possibly vectorizing sample get_Xx
— these are relatively short functions with simple operations, it is not rocket science
» API: could start by preparing baskets and then looping internally as Olivier did for MEs
— the main problem | see is that there are many COMMON’s making this stateful
« can the hidden inputs/outputs requiring these COMMON’s be avoided?
« or can these hidden inputs/outputs be moved outside the event/particle loop?

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 25

~Z_




Progress on DY+jets for CMS

Andrea Valassi
(CERN IT-GOV-ENG)

With many thanks especially to Jin Choi, Olivier Mattelaer, Daniele Massaro!

Madgraph on GPU meeting with CMS, 13" August 2024
https://indico.cern.ch/event/1373474

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 26

~Z_



https://indico.cern.ch/event/1373474

Overview: follow-up on Jin’s reports in July

« Jin reported several issues during the last meetings in July
— https://indico.cern.ch/event/1373473/ (July 30)
— https://indico.cern.ch/event/1441554/ (July 26, CMS gen meeting)
— https://indico.cern.ch/event/1373472/ (July 16)

» Here | describe some followup on those issues (which | linked to github tickets)
— Also profiting from work and results by Olivier and Daniele (thanks!)

* (1) CMS sees some Floating Point Exceptions in various DY processes
— Details on https://github.com/madgraph5/madgraph4gpu/issues/942

* (2) CMS sees a discrepancy in DY+4 jets cross section for Fortran vs Cuda/C++
— Details on https://github.com/madgraph5/madgraph4gpu/issues/944

* (3) CMS sees a speedup for DY+4 jets, but not for DY+3 jets
— Details on https://github.com/madgraph5/madqgraph4gpu/issues/943

C\_E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 27
NS



https://indico.cern.ch/event/1373473/
https://indico.cern.ch/event/1441554/
https://indico.cern.ch/event/1373472/
https://github.com/madgraph5/madgraph4gpu/issues/942
https://github.com/madgraph5/madgraph4gpu/issues/944
https://github.com/madgraph5/madgraph4gpu/issues/943

(1) Floating Point Exceptions in DY

https://github.com/madgraph5/madgraph4gpu/issues/942

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 28

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/942

Followup of FPEs in DY

« | initially thought this might be related to SIMD (we saw many FPEs in SIMD code)
— | asked Jin to do various tests with —O3 and —O flags (thanks Jin!)
— But it soon was clear that this is not the source of the problem

« Later on | generated and tested some DY processes and | also saw the issue
— Details: reproducible; at events 11 and 12; also without —O3; comes from pdf=0 (!?)
— Many suggestions by Olivier (thanks!), e.g. check if this comes from a reset after 10 events
— Status: reproducible bug, need to follow up (e.g. | will check this reset after 10 events)

« Work around: must disable FPE crashes to be able to do anything with DY
— Essentially, comment out or remove “feenableexcept” calls
— | understand that this is what Jin has done (modifying all code manually?)

— For convenience: | added an env variable CUDACPP_RUNTIME_DISABLEFPE
» This is in a WIP PR, not yet merged (but Jin ask me if you are interested...)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 29

~Z_




CERN

\

~Z_

(2) Cross-section mismatch in DY+4jets

https://github.com/madgraph5/madgraph4gpu/issues/944

\ XSECS

® Least validation

FORTRAN [pb]

Compatible

TN

CPP [pb]

CUDA [pb]

DY+0j

5704 \pm 10.11

5711 \pm 1.053

5710 \pm 1.484

DY+1]

3539 \pm 8.096

3535 \pm 1.263

3536 \pm 1.442

DY+2j

2228 \pm 3.143

2236 \pm 0.503

2237 \pm 0.4618

DY+3]

1375 \pm 1.265

1387 \pm 0.3515

1385 \pm 0.3288

DY+4j

883.4\pm 0.3813

845.8 \pm 0.21

843.8 \pm 0.2022

JIN CHOI

?

A bit large errors / different xsecs for FORTRAN?

FORTRAN: Original MG
CPP: Vectorized CPU
CUDA: GPU

10

w A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

27 August 2024

30



https://github.com/madgraph5/madgraph4gpu/issues/944

Followup of cross-section mismatch in DY+4|

« My doubt is whether the statistical (MC) errors quoted are reliable or underestimated

— We know there is a large systematic bias, but this should be the same for all results?
« Zenny (thanks!) suggests that this is not necessarily the case (each event has a different scale)

« My approach: use different random numbers and observe the distribution!

— | only had time for a first quick test (DY + 0,1,2 jets), results not really conclusive?
 But my first impression is that the errors are somewhat underestimated — some big outliers
* https://github.com/madgraph5/madgraph4gpu/issues/944#issuecomment-2271099576

— Status: to be followed up...
* | need to repeat this for DY+2 alone or DY+3, and with more than 10 data points...

more tlau/logs ppdy@12j.mad fortran/*txt | egrep '(Current est)'

- Current estimate of cross-section: 22684.882597000003 +- 25.69693417269259
- Current estimate of cross-section: 22736.487131999995 +- 26.02223931415431
- Current estimate of cross-section: 22606.672284000004 +- 25.982101016390413
- Current estimate of cross-section: 22680.418818000002 +- 30.296789851771535
- current estimate of cross-section: 22598.979159 +- 29.0895684586947588

- Current estimate of cross-section: 22661.842675000004 +- 28.504426906822836
- Current estimate of cross-section: 22594.760607 +- 25.320150482309723

- Current estimate of cross-section: 22562.885393999994 +- 27.53350228395446
- Current estimate of cross-section: 22783.444705999995 +- 24.879796947884447
- Current estimate of cross-section: 22699.778944 +- 24.8383887513199372

— Aside: #959 new bug found? DY+3j xsection changes by x10 depending on vector_size?

» NB: Daniele is also doing tests with a different approach (e.g. try SDE flags etc)...

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 31

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/944#issuecomment-2271099576
https://github.com/madgraph5/madgraph4gpu/issues/959

(3) No speedup from SIMD/GPU in DY +3jets?

https://github.com/madgraph5/madgraph4gpu/issues/943

.y 5
\ GENERATION TIME
<8> Results
&/ Producing 100K events w/ single thread
FORTRAN CPP CUDA
DY+2j 80m 10s 59s 2s 40m 2s
DY +3j 130m 51s 153m 46s 101m 25s
DY+4j never ends (>4000m) 1366m 49s 426m 54s
&7 Improvement starts with DY+2j, ~x10 faster for DY+4;j
JIN CHOI 22

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

~Z_

27 August 2024 32



https://github.com/madgraph5/madgraph4gpu/issues/943

SIMD/GPU speedups — preliminary work

» To follow up on the CMS DY+3jet speed issue | did a lot of (general) preliminary work
— Condensed summary below — NB these are all WIP PRs (not yet reviewed or merged...)

* (1) Multi-backend gridpacks
— Create gridpacks that contain Fortran, CUDA and all SIMD builds; the madevent executable
symlink is updated when running the gridpack (issue #945, WIP PR #948)

 (2) Profiling infrastructure for python/bash orchestrator of many madevent processes
— Special gridpack creation in private “tlau/gridpacks” scripts; modified python scripts keep,
parse and aggregate individual madevent logs (issue #957, WIP PR #948)

 (3) Performance bug fix: compute MEs for only ~16 events during helicity filtering
— Only 16 events were used in SIMD to filter good helicities, but MEs were computed for 16k
events; now fixed with “compute good helicities only” flag (issue #958, WIP PR #960)
— Notel: this improves SIMD runs with vector_size=16384; less relevant if vector_size=32
— Note2 (to do): maybe a similar bug is lurking for CUDA too, but is probably less relevant?

* (4) More fine-grained profiling of fortran/cudacpp components in a madevent process
— Progressively identified all major scalar bottlenecks and added individual timers/counters for
all of them (WIP PR #962, generic; WIP PR #946, CMS DY+jets)
— Note: this also benefits from earlier profiling flamegraphs by Daniele (thanks!)

C\_E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 33

~Z_



https://github.com/madgraph5/madgraph4gpu/issues/945
https://github.com/madgraph5/madgraph4gpu/issues/948
https://github.com/madgraph5/madgraph4gpu/issues/957
https://github.com/madgraph5/madgraph4gpu/issues/948
https://github.com/madgraph5/madgraph4gpu/issues/958
https://github.com/madgraph5/madgraph4gpu/issues/960
https://github.com/madgraph5/madgraph4gpu/issues/962
https://github.com/madgraph5/madgraph4gpu/issues/946

Tuning fine-grained madevent profiling

* | progressively added individual timers/counters to new distinct code sections
— Goal: reduce generic “Fortran Other” contribution to negligible (say <2% of total time)...
* ... while taking care to avoid double counting (which would make “Fortran Other” negative)

— | used a very simple gg to tt process for this exercise (fast MEs, high non-MEs contribution)
* https://github.com/madgraph5/madgraph4gpu/pull/962#issuecomment-2284597295

— NB: the relative weight of each contribution is highly process-dependent! (see DY later...)

./build.cuda_d_inl@_hrd@/madevent_cuda < ,‘tmp,’avalasn{mput_ggtt ¥l _cudacpp Fortran driver initialization (6%):
[COUNTERS] PROGRAM TOTAL : 1.8988s I/O (read initialization flleS)
[COUNTERS] Fortran Other ( @) : 9.0117s
[COUNTERS] Fortran Initialise(I/0) { 1) : @.0697s )
[COUNTERS] Fortran Random2Momenta {( 3) : 8.8167s for 16399 events Fortran pf(]jase Spage sampling (2%):
[COUNTERS] Fortran PDFs ( 4) : 8.09168s for 32768 events map random numbers to momenta
[COUNTERS] Fortran UpdateScaleCouplings { 5) : ©8.00898s for 16384 events
[COUNTERS] Fortran Reweight ( 6): ©8.0473s for 16384 events Fortran PDFs [in dsig1] (9%):
[COUNTERS] Fortran Unweight(LHE-I/0) ( 7)) : 0.1488s for 16384 events PDF interpolation
[COUNTERS] Fortran SamplePutPoint { 8) : 8.2702s for 16399 events
[COUNTERS] CudaCpp Initialise (112) : 0.4077s Fortran update scales [in dsig1] (1%):
[COUNTERS] CudaCpp Finalise {12 ) : @.0250s determine coupling scale
[COUNTERS] CudaCpp MEs { 19 ) : 8.00816s for 16384 events
[COUNTERS] OVERALL NON-MEs (21): 1.0979s Fortran reweight [in dsigl] (5%):
[COUNTERS] OVERALL MEs {22 ) : 8.0910s for 16384 events internally, more PDFs and scales

(move to the two above instead?)

CUDA initialization (41%): .
initialize GPU (one-off) Fortran unweight (15%):
I/O (write LHE files)

CUDACPP finalization (3%):

reset GPU, clean up Fortran sample_put_point (27%):

I/0 (update Vegas grids?)

C\_E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 34
LA



https://github.com/madgraph5/madgraph4gpu/pull/962#issuecomment-2284597295

Followup of SIMD/GPU speedups in DY+3j (1)

* | prepared a multi-backend gridpack (vegas optimized in fortran)
— Then | executed the gridpack on all Fortran and SIMD backends (no CUDA on this node)

» Overall results for the different backends
— https://github.com/madgraph5/madgraph4gpu/issues/94 3#issuecomment-2284882990
— Total time of gridpack including python/back orchestrator
— Total aggregated time of madevent executables only
— First observation: python/bash contribution is negligible (gridpack minus madevent)

— Second observation: | do see a speedup by a factor x2.5 from SIMD!? To cross check...
* Note: this includes the helicity filtering fix (but irrelevant for Jin who already uses vector_size=327?)
» Note: maybe this is using a more recent version of the code with fixes which Jin is missing?

pp_dy3j.mad// fortran/output . txt

[GridPackCmd. launch] GRIDPCEK TOTAL 447.7169 seconds
[madewvent COUHNTERS] PROGRAM TOTAL 443.48
pp_dy3j.mad//eppnone/output . txt

[GridPackCmd. launch] GRIDPCE TOTAL 448.1598 seconds
[madewvent COUHTERS] PROGRAM TOTAL 443.898
pPr_dy¥3j.mad/fcppssed/output .. txt

[GridPackCmd. launch] GRIDPCEKE TOTAL 295.7847 seconds
[madevent COUNTERS] PROGRAM TOTAL 291.523

pp_dy3j . mad/feppavx?2foutput . txt

[GridPackCmd. launch] GRIDPCEK TOTAL 204.7001 seconds
[madevent COUHTERS] PROGRAM TOTAL 200. 453
pPr_dy¥3j.mad/fepphl2y/output . txt

[GridPackCmd. launch] GRIDPCKE TOTAL 201.0406 seconds
[madewvent COUHNTERS] PROGRAH TOTAL 196.745

pp_dy3j. mad//feppbl2z/output . txt

[GridPackCmd. launch] GRIDPCK TOTAL 176.8891 seconds
[madewvent COUHTERS] PROGRAM TOTAL 172. 637

C\_E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 35
NS



https://github.com/madgraph5/madgraph4gpu/issues/943#issuecomment-2284882990

Followup of SIMD/GPU speedups in DY+3j (2)

» Results of fine-grained madevent profiling
— The profile is VERY different from that of a simpler gg to tt!
— Observation 1 (not shown here): the overall non-ME contribution is identical in all backends
— Observation 2: the scalar bottleneck is phase space sampling! (~50% for AVX512)
— Observation 3: PDFs scalar contribution is important but not dominant! (~5% for AVX512)

pp_dy3j.mad//cpp512z/output.txt

GridPackCmd.launch] GRIDPCK TOTAL 176.8891 seconds
madevent COUNTERS] PROGRAM TOTAL 172.637

madevent COUNTERS] Fortran Other 6.5768

Fortran driver initialization (6%):
I/O (read initialization files)

Fortran phase space sampling (2%):
madevent COUNTERS] Fortran InltlallSE{I;{O) 4,486 map random numbers to momenta

[

[

[

[

[madevent COUNTERS] | Fortran Random2Momenta 93.29097
[madevent COUNTERS] Fortran PDFs 8.2998

[madevent COUNTERS] Fortran UpdateScaleCouplings 7.2827
[madevent COUNTERS] Fortran Reweight 3.7045
[
[
[
[
[
[
[

Fortran PDFs [in dsigl] (9%):
PDF interpolation

madevent COUNTERS] Fortran Unweight(LHE-I/0) 4.8719
madevent COUNTERS] Fortran SamplePutPoint 8.2892
madevent COUNTERS] CudaCpp Initialise @.3619
madevent COUNTERS] CudaCpp Finalise ©.0221 Fortran reweight [in dsigl1] (5%):

madevent COUNTERS] | cudacpp MEs 35.4557 internally, more PDFs and scales
(move to the two above instead?)

Fortran update scales [in dsig1] (1%):
determine coupling scale

madevent COUNTERS] OVERALL NOM-MEs 137.181
madevent COUNTERS] OVERALL MEs 35.4557

Fortran unweight (15%):
I/O (write LHE files)

CUDACPP initialization (0%): CUDACPP finalization (0%):
initialize Bridge reset Bridge, clean up Fortran sample_put_point (27%):
I/0 (update Vegas grids?)

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024 36

~Z_




Outlook: vectorizing other components

» Further speedup for DY+3 jets would require vectorizing other components
— (Or speeding them up in much more trivial ways, if low hanging fruits exist...)

* Phase space sampling (random to momenta mapping) is the first IMO
— It represents a very significant fraction (~50% in DY+3 jets with AVX512/zmm)

— And it should normally be “easy” to parallelize with lockstep processing? (few branches)
* Probably a few months of work, anyway...

2. NEW MADEVENT

(GOAL: LHC PROD)
MULTI-EVENT API

FORTRAN:

FORTRAN:

(Amdabhl...)

RANMAR RANMAR
wﬂ w SCALAR:
NEW . .
FORTRAN: FORTRAN: BOTTLENECK? I.e. replace this Fortran component
MADEVENT MADEVENT .
i —  (random number to momenta mapping)
- ST by a new CudaCpp kernel for SIMD/GPU

FORTRAN:
MATRIX1

PARALLEL:
MUCH FASTER!

MAT MENTS

MATRIX ELEMENTS

Compute Accelerator Forum — CERN, & February 2023 30

« PDFs are certainly another very important component to parallelize
— Work in this direction already exists and/or is already planned

« Other components
— Update of coupling scales? Too many branches for lockstep data parallelism?
—1/O (Vegas grids and LHE files) also need optimization...

C\E/RW A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

~Z_

27 August 2024

37



